Signs of timing in motor cortex during movement preparation and cue anticipation. 2014

Bjørg Elisabeth Kilavik, and Joachim Confais, and Alexa Riehle
Institut de Neurosciences de la Timone (INT), CNRS - Aix Marseille Université, Marseille, France.

The capacity to accurately anticipate the timing of predictable events is essential for sensorimotor behavior. Motor cortex holds an established role in movement preparation and execution. In this chapter we review the different ways in which motor cortical activity is modulated by event timing in sensorimotor delay tasks. During movement preparation, both single neuron and population responses reflect the temporal constraints of the task. Anticipatory modulations prior to sensory cues are also observed in motor cortex when the cue timing is predictable. We propose that the motor cortical activity during cue anticipation and movement preparation is embedded in a timing network that facilitates sensorimotor processing. In this context, the pre-cue and post-cue activity may reflect a presetting mechanism, complementing processing during movement execution, while prohibiting premature responses in situations requiring delayed motor output.

UI MeSH Term Description Entries
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D003463 Cues Signals for an action; that specific portion of a perceptual field or pattern of stimuli to which a subject has learned to respond. Cue
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013998 Time Perception The ability to estimate periods of time lapsed or duration of time. Temporal Perception,Temporal Processing,Time Processing,Perception, Temporal,Perception, Time,Processing, Temporal,Processing, Time

Related Publications

Bjørg Elisabeth Kilavik, and Joachim Confais, and Alexa Riehle
October 2008, Experimental brain research,
Bjørg Elisabeth Kilavik, and Joachim Confais, and Alexa Riehle
November 2016, NeuroImage,
Bjørg Elisabeth Kilavik, and Joachim Confais, and Alexa Riehle
October 2019, Neuroscience bulletin,
Bjørg Elisabeth Kilavik, and Joachim Confais, and Alexa Riehle
January 2019, Brain stimulation,
Bjørg Elisabeth Kilavik, and Joachim Confais, and Alexa Riehle
April 2018, Journal of neurophysiology,
Bjørg Elisabeth Kilavik, and Joachim Confais, and Alexa Riehle
November 2014, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Bjørg Elisabeth Kilavik, and Joachim Confais, and Alexa Riehle
April 2013, Brain research,
Bjørg Elisabeth Kilavik, and Joachim Confais, and Alexa Riehle
January 2012, PloS one,
Bjørg Elisabeth Kilavik, and Joachim Confais, and Alexa Riehle
May 1975, Brain research,
Bjørg Elisabeth Kilavik, and Joachim Confais, and Alexa Riehle
March 2017, Cell reports,
Copied contents to your clipboard!