Beta-adrenergic receptor regulation during hypoxia in intact cultured heart cells. 1989

J D Marsh, and K A Sweeney
Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115.

Regulation of cardiac beta-adrenergic receptors during hypoxia and ischemia is an area of active investigation, with some investigators reporting an increase in sarcolemmal beta-receptor number after ischemia. Previous studies have been limited by the necessity of examining beta-adrenergic receptor properties in membrane preparations from hypoxic or ischemic cardiac tissue and drawing conclusions about receptor localization in intact tissue from the behavior of a fraction of total receptors in membrane populations. As an approach to examining beta-receptor properties under well-defined pathophysiological conditions in intact heart cells, we studied cell-surface beta-receptors and adenylate cyclase activity in intact cultured chick embryo ventricular cells under conditions of controlled hypoxia and reoxygenation. During 2 h of hypoxia (PO2 less than 1.5 Torr) there was a progressive decline in cell surface beta-receptors from 26 +/- 2 to 10 +/- 6 fmol/mg (P less than 0.003) with no change in antagonist or agonist affinity. Receptor number recovered fully during 2 h of reoxygenation. Basal adenosine 3',5'-cyclic monophosphate (cAMP) production was unchanged, but response to isoproterenol in the absence or presence of a phosphodiesterase inhibitor decreased to about half of the response for normoxic cells but fully recovered during reoxygenation in a pattern similar to that for receptor number. Although [ATP] declined significantly during hypoxia (from 35 to 25 nmol/mg), the decline in [GTP] was marginal (4.3 to 3.9 nmol/mg), making it unlikely that substrate for guanine nucleotide regulatory protein was limiting for beta-adrenergic signal transduction.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011412 Propanolamines AMINO ALCOHOLS containing the propanolamine (NH2CH2CHOHCH2) group and its derivatives. Aminopropanols
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D002258 Carbonyl Cyanide m-Chlorophenyl Hydrazone A proton ionophore. It is commonly used as an uncoupling agent and inhibitor of photosynthesis because of its effects on mitochondrial and chloroplast membranes. CCCP,Carbonyl Cyanide meta-Chlorophenyl Hydrazone,Carbonylcyanide 4-Chlorophenylhydrazone,Propanedinitrile, ((3-chlorophenyl)hydrazono)-,Carbonyl Cyanide m Chlorophenyl Hydrazone,4-Chlorophenylhydrazone, Carbonylcyanide,Carbonyl Cyanide meta Chlorophenyl Hydrazone,Carbonylcyanide 4 Chlorophenylhydrazone
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

J D Marsh, and K A Sweeney
July 1978, Molecular pharmacology,
J D Marsh, and K A Sweeney
February 1992, Molecular pharmacology,
J D Marsh, and K A Sweeney
July 1979, Journal of neurochemistry,
J D Marsh, and K A Sweeney
March 1999, In vitro cellular & developmental biology. Animal,
J D Marsh, and K A Sweeney
March 1987, Journal of molecular and cellular cardiology,
J D Marsh, and K A Sweeney
January 1987, Biomedica biochimica acta,
Copied contents to your clipboard!