Nucleotide sequence of Escherichia coli isochorismate synthetase gene entC and evolutionary relationship of isochorismate synthetase and other chorismate-utilizing enzymes. 1989

B A Ozenberger, and T J Brickman, and M A McIntosh
Department of Microbiology, School of Medicine, University of Missouri-Columbia 65212.

Biochemical analysis of the enzymatic activity catalyzing the conversion of chorismate to isochorismate in the enterobactin biosynthetic pathway attributed the reaction to the isochorismate synthetase enzyme, designated EntC. However, the lack of mutations defining this activity has hampered the precise identification of the entC structural gene. In this study, we engineered a stable insertion mutation into the chromosomal region between the enterobactin genes fepB and entE. This mutation disrupted the structural gene for a previously identified 44-kilodalton protein and eliminated production of 2,3-dihydroxybenzoic acid, the catechol precursor of enterobactin. The complete nucleotide sequence of this gene was determined and compared with the sequences of other genes encoding chorismate-utilizing proteins. The similarities observed in these comparisons not only indicated that the locus is entC but also supported the premise that these enzymes constitute a family of related proteins sharing a common evolutionary origin. In addition, in this and the accompanying paper (M. S. Nahlik, T. J. Brickman, B. A. Ozenberger, and M. A. McIntosh, J. Bacteriol. 171:784-790, 1989), evidence is presented indicating that the entA product is potentially a secondary factor in the chorismate-to-isochorismate conversion and that the prototypic entC lesion (entC401) resides in the structural gene for the EntA protein. Finally, polarity effects from the insertion mutation in entC on downstream biosynthetic genes indicated that this locus is the promoter-proximal cistron in an ent operon comprising at least five genes. Appropriate regulatory signals upstream of entC suggest that this operon is regulated by iron through interaction with the Fur repressor protein.

UI MeSH Term Description Entries
D007535 Isomerases A class of enzymes that catalyze geometric or structural changes within a molecule to form a single product. The reactions do not involve a net change in the concentrations of compounds other than the substrate and the product.(from Dorland, 28th ed) EC 5. Isomerase
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002827 Chorismic Acid A cyclohexadiene carboxylic acid derived from SHIKIMIC ACID and a precursor for the biosynthesis of UBIQUINONE and the AROMATIC AMINO ACIDS. Acid, Chorismic
D003509 Cyclohexanecarboxylic Acids Carboxylic acid derivatives of cyclohexane. Acids, Cyclohexanecarboxylic
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial

Related Publications

B A Ozenberger, and T J Brickman, and M A McIntosh
December 2001, Biochimica et biophysica acta,
B A Ozenberger, and T J Brickman, and M A McIntosh
November 1987, Nucleic acids research,
B A Ozenberger, and T J Brickman, and M A McIntosh
September 2010, Bioorganic & medicinal chemistry letters,
B A Ozenberger, and T J Brickman, and M A McIntosh
September 2015, Angewandte Chemie (International ed. in English),
B A Ozenberger, and T J Brickman, and M A McIntosh
April 1986, The Journal of biological chemistry,
B A Ozenberger, and T J Brickman, and M A McIntosh
October 1998, Biochimica et biophysica acta,
Copied contents to your clipboard!