Mechanism of quinolone inhibition of DNA gyrase. Appearance of unique norfloxacin binding sites in enzyme-DNA complexes. 1989

L L Shen, and W E Kohlbrenner, and D Weigl, and J Baranowski
Anti-infective Research Division, Abbott Laboratories, Abbott Park, Illinois 60064.

As a means of gaining additional information on the topoisomerase-mediated cytotoxicity induced by a variety of antibacterial and antitumor compounds we have examined the interaction of the quinolone anti-bacterial agent, norfloxacin, with the bacterial topoisomerase, DNA gyrase. Membrane filtration and spin-column techniques were used to study the binding of [3H]norfloxacin to purified plasmid DNA, DNA gyrase, and complexes formed by adding gyrase to different forms of plasmid DNA. Consistent with previous results (Shen, L. L., and Pernet, A. G. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 301-311) little [3H]norfloxacin binds to reconstituted gyrase, but significant levels of drug bind nonspecifically to relaxed DNA. However, when DNA and gyrase are incubated together additional norfloxacin binding sites are detectable. These complex-dependent sites are distinguishable from those sites involved in nonspecific DNA binding in that the complex-dependent sites are saturable and they retain bound norfloxacin after centrifuging the complex through a spin column. In addition, extent of binding is influenced by the topological state of DNA used to form the complex. The complex-dependent norfloxacin binding sites are likely involved in the inhibition of the enzyme since saturation of these sites occurs in the same norfloxacin concentration range as the inhibition of DNA supercoiling activity. Moreover, there is a close correlation of norfloxacin-induced DNA breakage with levels of norfloxacin bound to complexes of gyrase and relaxed DNA. These findings provide the first direct correlation of quinolone binding with inhibition of enzyme activity and induction of DNA breakage, and they suggest that the inhibition of DNA gyrase by norfloxacin occurs as a result of binding to a site which appears after the formation of a gyrase-DNA complex.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009643 Norfloxacin A synthetic fluoroquinolone (FLUOROQUINOLONES) with broad-spectrum antibacterial activity against most gram-negative and gram-positive bacteria. Norfloxacin inhibits bacterial DNA GYRASE. AM-0715,AM-715,MK-0366,MK-366,MK0366,MK366,Noroxin,AM 0715,AM 715,AM0715,MK 0366,MK 366
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D015363 Quinolones A group of derivatives of naphthyridine carboxylic acid, quinoline carboxylic acid, or NALIDIXIC ACID. Ketoquinoline,Ketoquinolines,Oxoquinoline,Oxoquinolines,Quinolinone,Quinolinones,Quinolone
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular
D059005 Topoisomerase II Inhibitors Compounds that inhibit the activity of DNA TOPOISOMERASE II. Included in this category are a variety of ANTINEOPLASTIC AGENTS which target the eukaryotic form of topoisomerase II and ANTIBACTERIAL AGENTS which target the prokaryotic form of topoisomerase II. DNA Gyrase Inhibitor,DNA Topoisomerase II Inhibitor,Topoisomerase 2 Inhibitors,Topoisomerase II Inhibitor,DNA Gyrase Inhibitors,DNA Topoisomerase II Inhibitors,DNA Type 2 Topoisomerase Inhibitors,Gyrase Inhibitor, DNA,Gyrase Inhibitors, DNA,II Inhibitor, Topoisomerase,Inhibitor, DNA Gyrase,Inhibitor, Topoisomerase II,Inhibitors, DNA Gyrase,Inhibitors, Topoisomerase 2,Inhibitors, Topoisomerase II

Related Publications

L L Shen, and W E Kohlbrenner, and D Weigl, and J Baranowski
May 1989, Biochemistry,
L L Shen, and W E Kohlbrenner, and D Weigl, and J Baranowski
April 1986, Antimicrobial agents and chemotherapy,
L L Shen, and W E Kohlbrenner, and D Weigl, and J Baranowski
May 1989, Biochemistry,
L L Shen, and W E Kohlbrenner, and D Weigl, and J Baranowski
July 1989, Microbiologica,
L L Shen, and W E Kohlbrenner, and D Weigl, and J Baranowski
January 1994, Advances in pharmacology (San Diego, Calif.),
L L Shen, and W E Kohlbrenner, and D Weigl, and J Baranowski
June 2002, Antimicrobial agents and chemotherapy,
L L Shen, and W E Kohlbrenner, and D Weigl, and J Baranowski
August 1998, The Journal of biological chemistry,
L L Shen, and W E Kohlbrenner, and D Weigl, and J Baranowski
September 1994, Antimicrobial agents and chemotherapy,
L L Shen, and W E Kohlbrenner, and D Weigl, and J Baranowski
January 2001, Methods in molecular biology (Clifton, N.J.),
L L Shen, and W E Kohlbrenner, and D Weigl, and J Baranowski
March 2021, Science advances,
Copied contents to your clipboard!