Characterization and affinity cross-linking of receptors for human recombinant lymphotoxin (tumor necrosis factor-beta) on a human histiocytic lymphoma cell line, U-937. 1989

G B Stauber, and B B Aggarwal
Department of Protein Biochemistry, Genentech, Inc., South San Francisco, California 94080.

Recombinant human lymphotoxin (rhLT) expressed in a mammalian cell line was purified and used to examine its receptors on the human histiocytic lymphoma cell line U-937. rhLT was radioiodinated by the IODO-GEN method to a specific activity of 60 microCi/micrograms; the labeled protein was biologically active in the cytolytic assay, and displaceable binding to U-937 cells was observed. The specific binding reached a plateau within 10, 60, and 180 min at 37, 23, and 4 degrees C, respectively. Scatchard analysis of the binding data revealed the presence of a single class of high affinity receptors with an apparent Kd of 0.6 nM and a capacity of 33,000 +/- 7,000 binding sites/cell. The binding of 125I-rhLT to U-937 cells could be inhibited by excess unlabeled rhLT or recombinant human tumor necrosis factor (rhTNF), suggesting a common receptor for both molecules. As competitive inhibitor of the binding, rhTNF was equal in its potency to rhLT. Bacterial derived rhLT lacking carbohydrate was also found equipotent to cell line-derived rhLT for cell binding, indicating that carbohydrate plays no significant role in receptor interaction. Additionally, 125I-rhLT was covalently attached to the cell surface via a bifunctional cross-linking reagent, ethylene glycol bis(succinimidyl succinate), solubilized, and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The cross-linking of the receptor to rhLT revealed two distinct bands at approximate molecular masses of 100,000 and 120,000 daltons. Both bands were absent when unlabeled rhLT or rhTNF was used for competition, indicating the specificity. Affinity cross-linking of U-937 cells with 125I-rhTNF, however, provided only a single band with a molecular mass of about 100,000 daltons. These results suggest that the manner in which rhLT interacts with its receptor is perhaps somewhat different from that of rhTNF.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D013388 Succinimides A subclass of IMIDES with the general structure of pyrrolidinedione. They are prepared by the distillation of ammonium succinate. They are sweet-tasting compounds that are used as chemical intermediates and plant growth stimulants. Butanimides,Pyrrolidinediones

Related Publications

G B Stauber, and B B Aggarwal
May 1976, International journal of cancer,
G B Stauber, and B B Aggarwal
November 1989, Archives of biochemistry and biophysics,
G B Stauber, and B B Aggarwal
April 1995, Inflammation research : official journal of the European Histamine Research Society ... [et al.],
G B Stauber, and B B Aggarwal
August 1986, The Journal of biological chemistry,
G B Stauber, and B B Aggarwal
October 1990, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
Copied contents to your clipboard!