Two genetic elements regulate murine beta-glucuronidase synthesis following transcript accumulation. 1989

C J Wawrzyniak, and S A Meredith, and R E Ganschow
Division of Basic Science Research, Children's Hospital Research Foundation, Cincinnati, Ohio 45229.

Mutant alleles of two genetic regulatory elements, which underlie a three- to sixfold reduction in beta-glucuronidase (GUS) activity levels, distinguish mice of the H haplotype from those of the other two common GUS haplotypes, A and B. Both elements are tightly linked to the GUS structural gene over which they exert control. One (Gus-u) exerts a cis-active effect upon GUS activity levels in all tissues at all times while the other (Gus-t) regulates GUS activity in trans after the 12th postnatal day in certain tissues. While previous studies show that differences in the rate of GUS synthesis account for the combined effects of these two elements in liver of adult mice, we demonstrate the separate effects of each on GUS synthesis at times during early postnatal development when their individual expressions can be distinguished. Assessments of the relative levels of S1 nuclease protection of a radiolabeled GUS antisense RNA probe after hybridization with total liver RNA preparations from adult mice of A and H haplotypes reveal no differences. These results argue that Gus-u and Gus-t exert their control of GUS expression subsequent to the accumulation of processed GUS transcripts.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D004720 Endonucleases Enzymes that catalyze the hydrolysis of the internal bonds and thereby the formation of polynucleotides or oligonucleotides from ribo- or deoxyribonucleotide chains. EC 3.1.-. Endonuclease
D005260 Female Females
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005966 Glucuronidase Endo-beta-D-Glucuronidase,Endoglucuronidase,Exo-beta-D-Glucuronidase,beta-Glucuronidase,Endo beta D Glucuronidase,Exo beta D Glucuronidase,beta Glucuronidase
D006239 Haplotypes The genetic constitution of individuals with respect to one member of a pair of allelic genes, or sets of genes that are closely linked and tend to be inherited together such as those of the MAJOR HISTOCOMPATIBILITY COMPLEX. Haplotype
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

C J Wawrzyniak, and S A Meredith, and R E Ganschow
March 1977, Experientia,
C J Wawrzyniak, and S A Meredith, and R E Ganschow
December 1978, Genetics,
C J Wawrzyniak, and S A Meredith, and R E Ganschow
August 1977, Biochemical genetics,
C J Wawrzyniak, and S A Meredith, and R E Ganschow
September 1952, Science (New York, N.Y.),
C J Wawrzyniak, and S A Meredith, and R E Ganschow
April 2000, Biochemical pharmacology,
C J Wawrzyniak, and S A Meredith, and R E Ganschow
March 1986, Endocrinology,
C J Wawrzyniak, and S A Meredith, and R E Ganschow
January 1971, Oncology,
C J Wawrzyniak, and S A Meredith, and R E Ganschow
October 1978, Biochemical genetics,
C J Wawrzyniak, and S A Meredith, and R E Ganschow
December 1987, Proceedings of the National Academy of Sciences of the United States of America,
C J Wawrzyniak, and S A Meredith, and R E Ganschow
July 1992, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!