Ankyrin links fodrin to the alpha subunit of Na,K-ATPase in Madin-Darby canine kidney cells and in intact renal tubule cells. 1989

J S Morrow, and C D Cianci, and T Ardito, and A S Mann, and M Kashgarian
Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510.

In nonerythroid cells the distribution of the cortical membrane skeleton composed of fodrin (spectrin), actin, and other proteins varies both temporally with cell development and spatially within the cell and on the membrane. In monolayers of Madin-Darby canine kidney (MDCK) cells, it has previously been shown that fodrin and Na,K-ATPase are codistributed asymmetrically at the basolateral margins of the cell, and that the distribution of fodrin appears to be regulated posttranslationally when confluence is achieved (Nelson, W. J., and P. I. Veshnock. 1987. J. Cell Biol. 104:1527-1537). The molecular mechanisms underlying these changes are poorly understood. We find that (a) in confluent MDCK cells and intact kidney proximal tubule cells, Na,K-ATPase, fodrin, and analogues of human erythrocyte ankyrin are precisely colocalized in the basolateral domain at the ultrastructural level. (b) This colocalization is only achieved in MDCK cells after confluence is attained. (c) Erythrocyte ankyrin binds saturably to Na,K-ATPase in a molar ratio of approximately 1 ankyrin to 4 Na,K-ATPase's, with a kD of 2.6 microM. (d) The binding of ankyrin to Na,K-ATPase is inhibited by the 43-kD cytoplasmic domain of erythrocyte band 3. (e) 125I-labeled ankyrin binds to the alpha subunit of Na,K-ATPase in vitro. There also appears to be a second minor membrane protein of approximately 240 kD that is associated with both erythrocyte and kidney membranes that binds 125I-labeled ankyrin avidly. The precise identity of this component is unknown. These results identify a molecular mechanism in the renal epithelial cell that may account for the polarized distribution of the fodrin-based cortical cytoskeleton.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007684 Kidney Tubules Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER. Kidney Tubule,Tubule, Kidney,Tubules, Kidney
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008840 Microfilament Proteins Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell. Actin Binding Protein,Actin-Binding Protein,Actin-Binding Proteins,Microfilament Protein,Actin Binding Proteins,Binding Protein, Actin,Protein, Actin Binding,Protein, Actin-Binding,Protein, Microfilament,Proteins, Actin-Binding,Proteins, Microfilament
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes

Related Publications

J S Morrow, and C D Cianci, and T Ardito, and A S Mann, and M Kashgarian
April 1986, The Journal of cell biology,
J S Morrow, and C D Cianci, and T Ardito, and A S Mann, and M Kashgarian
September 1997, Proceedings of the National Academy of Sciences of the United States of America,
J S Morrow, and C D Cianci, and T Ardito, and A S Mann, and M Kashgarian
February 1990, The Journal of biological chemistry,
J S Morrow, and C D Cianci, and T Ardito, and A S Mann, and M Kashgarian
April 1995, Pflugers Archiv : European journal of physiology,
J S Morrow, and C D Cianci, and T Ardito, and A S Mann, and M Kashgarian
August 2003, Sheng li xue bao : [Acta physiologica Sinica],
J S Morrow, and C D Cianci, and T Ardito, and A S Mann, and M Kashgarian
June 1993, The American journal of physiology,
J S Morrow, and C D Cianci, and T Ardito, and A S Mann, and M Kashgarian
August 1993, Journal of the American Society of Nephrology : JASN,
J S Morrow, and C D Cianci, and T Ardito, and A S Mann, and M Kashgarian
March 1992, Pflugers Archiv : European journal of physiology,
J S Morrow, and C D Cianci, and T Ardito, and A S Mann, and M Kashgarian
February 2002, Tissue engineering,
Copied contents to your clipboard!