Activation of the Na+/H+ antiport is not required for epidermal growth factor-dependent gene expression, growth inhibition or proliferation in human breast cancer cells. 1989

J G Church, and G B Mills, and R N Buick
Ontario Cancer Institute, University of Toronto, Canada.

Mitogen interaction with specific receptors in many cell types leads to activation of the Na+/H+ antiport and a resultant cytoplasmic alkalinization. Since amiloride inhibits both Na+/H+ exchange and cell proliferation, it has been hypothesized that activation of the antiport is an obligatory requirement for mitogenesis. However, concentrations of amiloride which inhibit the antiport also inhibit other cellular processes, including protein synthesis and phosphorylation. We have used an epidermal growth factor (EGF) receptor gene-amplified human breast cancer cell line, the growth of which is inhibited by high levels of EGF in culture (MDA-468) and a variant, the growth of which is stimulated by EGF (MDA-468-S4), along with two potent amiloride analogues to examine whether activation of the Na+/H+ antiport and cytoplasmic alkalinization is necessary for both EGF-dependent effects to occur. At concentrations of the amiloride analogues which block Na+/H+ exchange in both cell types by 76-98%, the EGF-dependent alterations in [3H]thymidine incorporation or induction in c-myc or c-fos gene transcription were unaltered. These results were confirmed by a lack of effect of the amiloride analogues on both the growth-stimulatory and growth-inhibitory effects on EGF in an anchorage-independent growth assay. Similarly, in pH-altered media that prevented normal cytoplasmic alkalinization, the response of both MDA-468 and MDA-468-S4 to EGF activation was unaltered. In addition, activation of the Na+/H+ antiport alone was not sufficient to induce c-myc and c-fos transcription in either cell type. Taken together, these data suggest that neither the Na+/H+ antiport nor cytoplasmic alkalinization are necessary or sufficient for either EGF-dependent growth stimulation or growth inhibition in MDA-468 human breast cancer cells.

UI MeSH Term Description Entries
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000584 Amiloride A pyrazine compound inhibiting SODIUM reabsorption through SODIUM CHANNELS in renal EPITHELIAL CELLS. This inhibition creates a negative potential in the luminal membranes of principal cells, located in the distal convoluted tubule and collecting duct. Negative potential reduces secretion of potassium and hydrogen ions. Amiloride is used in conjunction with DIURETICS to spare POTASSIUM loss. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p705) Amidal,Amiduret Trom,Amiloberag,Amiloride Hydrochloride,Amiloride Hydrochloride, Anhydrous,Kaluril,Midamor,Midoride,Modamide,Anhydrous Amiloride Hydrochloride,Hydrochloride, Amiloride,Hydrochloride, Anhydrous Amiloride,Trom, Amiduret
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

J G Church, and G B Mills, and R N Buick
February 1986, Journal of immunology (Baltimore, Md. : 1950),
J G Church, and G B Mills, and R N Buick
June 2007, Journal of virology,
J G Church, and G B Mills, and R N Buick
September 1992, The Journal of biological chemistry,
J G Church, and G B Mills, and R N Buick
July 1987, Acta paediatrica Scandinavica,
J G Church, and G B Mills, and R N Buick
August 2010, Breast cancer research and treatment,
Copied contents to your clipboard!