Transcriptomic diversification of developing cumulus and mural granulosa cells in mouse ovarian follicles. 2015

Karen Wigglesworth, and Kyung-Bon Lee, and Chihiro Emori, and Koji Sugiura, and John J Eppig
The Jackson Laboratory, Bar Harbor, Maine.

Cumulus cells and mural granulosa cells (MGCs) have functionally distinct roles in antral follicles, and comparison of their transcriptomes at a global and systems level can propel future studies on mechanisms underlying their functional diversity. These cells were isolated from small and large antral follicles before and after stimulation of immature mice with gonadotropins, respectively. Both cell types underwent dramatic transcriptomic changes, and differences between them increased with follicular growth. Although cumulus cells of both stages of follicular development are competent to undergo expansion in vitro, they were otherwise remarkably dissimilar with transcriptomic changes quantitatively equivalent to those of MGCs. Gene ontology analysis revealed that cumulus cells of small follicles were enriched in transcripts generally associated with catalytic components of metabolic processes, while those from large follicles were involved in regulation of metabolism, cell differentiation, and adhesion. Contrast of cumulus cells versus MGCs revealed that cumulus cells were enriched in transcripts associated with metabolism and cell proliferation while MGCs were enriched for transcripts involved in cell signaling and differentiation. In vitro and in vivo models were used to test the hypothesis that higher levels of transcripts in cumulus cells versus MGCs is the result of stimulation by oocyte-derived paracrine factors (ODPFs). Surprisingly ∼48% of transcripts higher in cumulus cells than MGCs were not stimulated by ODPFs. Those stimulated by ODPFs were mainly associated with cell division, mRNA processing, or the catalytic pathways of metabolism, while those not stimulated by ODPFs were associated with regulatory processes such as signaling, transcription, phosphorylation, or the regulation of metabolism.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005260 Female Females
D006080 Ovarian Follicle An OOCYTE-containing structure in the cortex of the OVARY. The oocyte is enclosed by a layer of GRANULOSA CELLS providing a nourishing microenvironment (FOLLICULAR FLUID). The number and size of follicles vary depending on the age and reproductive state of the female. The growing follicles are divided into five stages: primary, secondary, tertiary, Graafian, and atretic. Follicular growth and steroidogenesis depend on the presence of GONADOTROPINS. Graafian Follicle,Atretic Follicle,Ovarian Follicles,Atretic Follicles,Follicle, Atretic,Follicle, Graafian,Follicle, Ovarian,Follicles, Atretic,Follicles, Graafian,Follicles, Ovarian,Graafian Follicles
D006107 Granulosa Cells Supporting cells for the developing female gamete in the OVARY. They are derived from the coelomic epithelial cells of the gonadal ridge. Granulosa cells form a single layer around the OOCYTE in the primordial ovarian follicle and advance to form a multilayered cumulus oophorus surrounding the OVUM in the Graafian follicle. The major functions of granulosa cells include the production of steroids and LH receptors (RECEPTORS, LH). Cell, Granulosa,Cells, Granulosa,Granulosa Cell
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D046228 Microarray Analysis The simultaneous analysis, on a microchip, of multiple samples or targets arranged in an array format. Microarray Analytical Devices,Microarray Microchips,Nanoarray Analytical Devices,Analysis, Microarray,Analytical Device, Microarray,Analytical Device, Nanoarray,Analytical Devices, Microarray,Analytical Devices, Nanoarray,Device, Microarray Analytical,Device, Nanoarray Analytical,Devices, Microarray Analytical,Devices, Nanoarray Analytical,Microarray Analytical Device,Microarray Microchip,Microchip, Microarray,Microchips, Microarray,Nanoarray Analytical Device
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Karen Wigglesworth, and Kyung-Bon Lee, and Chihiro Emori, and Koji Sugiura, and John J Eppig
April 2022, Reproductive sciences (Thousand Oaks, Calif.),
Karen Wigglesworth, and Kyung-Bon Lee, and Chihiro Emori, and Koji Sugiura, and John J Eppig
January 2019, MicroRNA (Shariqah, United Arab Emirates),
Karen Wigglesworth, and Kyung-Bon Lee, and Chihiro Emori, and Koji Sugiura, and John J Eppig
January 1995, Developmental biology,
Karen Wigglesworth, and Kyung-Bon Lee, and Chihiro Emori, and Koji Sugiura, and John J Eppig
April 2007, Journal of cell science,
Karen Wigglesworth, and Kyung-Bon Lee, and Chihiro Emori, and Koji Sugiura, and John J Eppig
March 1971, Cell and tissue kinetics,
Karen Wigglesworth, and Kyung-Bon Lee, and Chihiro Emori, and Koji Sugiura, and John J Eppig
May 2009, Reproduction (Cambridge, England),
Karen Wigglesworth, and Kyung-Bon Lee, and Chihiro Emori, and Koji Sugiura, and John J Eppig
June 2024, Apoptosis : an international journal on programmed cell death,
Karen Wigglesworth, and Kyung-Bon Lee, and Chihiro Emori, and Koji Sugiura, and John J Eppig
January 2015, PloS one,
Karen Wigglesworth, and Kyung-Bon Lee, and Chihiro Emori, and Koji Sugiura, and John J Eppig
January 2000, Journal of reproduction and fertility. Supplement,
Copied contents to your clipboard!