Angelman syndrome imprinting center encodes a transcriptional promoter. 2015

Michael W Lewis, and Jason O Brant, and Joseph M Kramer, and James I Moss, and Thomas P Yang, and Peter J Hansen, and R Stan Williams, and James L Resnick
Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610-0266;

Clusters of imprinted genes are often controlled by an imprinting center that is necessary for allele-specific gene expression and to reprogram parent-of-origin information between generations. An imprinted domain at 15q11-q13 is responsible for both Angelman syndrome (AS) and Prader-Willi syndrome (PWS), two clinically distinct neurodevelopmental disorders. Angelman syndrome arises from the lack of maternal contribution from the locus, whereas Prader-Willi syndrome results from the absence of paternally expressed genes. In some rare cases of PWS and AS, small deletions may lead to incorrect parent-of-origin allele identity. DNA sequences common to these deletions define a bipartite imprinting center for the AS-PWS locus. The PWS-smallest region of deletion overlap (SRO) element of the imprinting center activates expression of genes from the paternal allele. The AS-SRO element generates maternal allele identity by epigenetically inactivating the PWS-SRO in oocytes so that paternal genes are silenced on the future maternal allele. Here we have investigated functional activities of the AS-SRO, the element necessary for maternal allele identity. We find that, in humans, the AS-SRO is an oocyte-specific promoter that generates transcripts that transit the PWS-SRO. Similar upstream promoters were detected in bovine oocytes. This result is consistent with a model in which imprinting centers become DNA methylated and acquire maternal allele identity in oocytes in response to transiting transcription.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011218 Prader-Willi Syndrome An autosomal dominant disorder caused by deletion of the proximal long arm of the paternal chromosome 15 (15q11-q13) or by inheritance of both of the pair of chromosomes 15 from the mother (UNIPARENTAL DISOMY) which are imprinted (GENETIC IMPRINTING) and hence silenced. Clinical manifestations include MENTAL RETARDATION; MUSCULAR HYPOTONIA; HYPERPHAGIA; OBESITY; short stature; HYPOGONADISM; STRABISMUS; and HYPERSOMNOLENCE. (Menkes, Textbook of Child Neurology, 5th ed, p229) Labhart-Willi Syndrome,Royer Syndrome,Labhart-Willi-Prader-Fanconi Syndrome,Prader Labhart Willi Syndrome,Prader-Labhart-Willi Syndrome,Royer's Syndrome,Willi-Prader Syndrome,Labhart Willi Prader Fanconi Syndrome,Labhart Willi Syndrome,Prader Willi Syndrome,Royers Syndrome,Syndrome, Labhart-Willi,Syndrome, Labhart-Willi-Prader-Fanconi,Syndrome, Prader-Labhart-Willi,Syndrome, Prader-Willi,Syndrome, Royer,Syndrome, Royer's,Syndrome, Willi-Prader,Willi Prader Syndrome
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D017204 Angelman Syndrome A syndrome characterized by multiple abnormalities, MENTAL RETARDATION, and movement disorders. Present usually are skull and other abnormalities, frequent infantile spasms (SPASMS, INFANTILE); easily provoked and prolonged paroxysms of laughter (hence "happy"); jerky puppetlike movements (hence "puppet"); continuous tongue protrusion; motor retardation; ATAXIA; MUSCLE HYPOTONIA; and a peculiar facies. It is associated with maternal deletions of chromosome 15q11-13 and other genetic abnormalities. (From Am J Med Genet 1998 Dec 4;80(4):385-90; Hum Mol Genet 1999 Jan;8(1):129-35) Happy Puppet Syndrome,Puppet Children,Children, Puppet,Syndrome, Angelman,Syndrome, Happy Puppet

Related Publications

Michael W Lewis, and Jason O Brant, and Joseph M Kramer, and James I Moss, and Thomas P Yang, and Peter J Hansen, and R Stan Williams, and James L Resnick
January 2008, American journal of medical genetics. Part A,
Michael W Lewis, and Jason O Brant, and Joseph M Kramer, and James I Moss, and Thomas P Yang, and Peter J Hansen, and R Stan Williams, and James L Resnick
May 2001, American journal of human genetics,
Michael W Lewis, and Jason O Brant, and Joseph M Kramer, and James I Moss, and Thomas P Yang, and Peter J Hansen, and R Stan Williams, and James L Resnick
January 1999, Advances in neurology,
Michael W Lewis, and Jason O Brant, and Joseph M Kramer, and James I Moss, and Thomas P Yang, and Peter J Hansen, and R Stan Williams, and James L Resnick
January 2019, Human molecular genetics,
Michael W Lewis, and Jason O Brant, and Joseph M Kramer, and James I Moss, and Thomas P Yang, and Peter J Hansen, and R Stan Williams, and James L Resnick
July 2010, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Michael W Lewis, and Jason O Brant, and Joseph M Kramer, and James I Moss, and Thomas P Yang, and Peter J Hansen, and R Stan Williams, and James L Resnick
June 1991, American journal of medical genetics,
Michael W Lewis, and Jason O Brant, and Joseph M Kramer, and James I Moss, and Thomas P Yang, and Peter J Hansen, and R Stan Williams, and James L Resnick
January 2006, Genesis (New York, N.Y. : 2000),
Michael W Lewis, and Jason O Brant, and Joseph M Kramer, and James I Moss, and Thomas P Yang, and Peter J Hansen, and R Stan Williams, and James L Resnick
January 2007, European journal of medical genetics,
Michael W Lewis, and Jason O Brant, and Joseph M Kramer, and James I Moss, and Thomas P Yang, and Peter J Hansen, and R Stan Williams, and James L Resnick
May 2009, No to hattatsu = Brain and development,
Michael W Lewis, and Jason O Brant, and Joseph M Kramer, and James I Moss, and Thomas P Yang, and Peter J Hansen, and R Stan Williams, and James L Resnick
June 2011, Trends in neurosciences,
Copied contents to your clipboard!