Clonal culture of adult mouse lung epithelial stem/progenitor cells. 2015

Jonathan L McQualter, and Ivan Bertoncello
Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Grattan Street, Parkville, VIC, 3010, Australia, jlmcq@unimelb.edu.au.

Clonal culture of stem cells is crucial for their identification, and the characterization of the cellular and molecular mechanisms that regulate their proliferation and differentiation. In the adult mouse lung, epithelial stem/progenitor cells are defined by the phenotype CD45(neg) CD31(neg) EpCAM(pos) CD104(pos) CD24(low). Here we describe a tissue dissociation and flow cytometry strategy for the detection and isolation of adult mouse lung epithelial stem/progenitor cells, and a three-dimensional colony-forming assay for their clonal culture in vitro.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003114 Colony-Forming Units Assay A cytologic technique for measuring the functional capacity of stem cells by assaying their activity. Clonogenic Cell Assay,Stem Cell Assay,Clonogenic Cell Assays,Colony Forming Units Assays,Colony-Forming Units Assays,Stem Cell Assays,Assay, Clonogenic Cell,Assay, Colony-Forming Units,Assay, Stem Cell,Assays, Clonogenic Cell,Assays, Colony-Forming Units,Assays, Stem Cell,Colony Forming Units Assay
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000071858 Epithelial Cell Adhesion Molecule A cell adhesion molecule that is expressed on the membranes of nearly all EPITHELIAL CELLS, especially at the junctions between intestinal epithelial cells and intraepithelial LYMPHOCYTES. It also is expressed on the surface of ADENOCARCINOMA and epithelial tumor cells. It may function in the MUCOSA through homophilic interactions to provide a barrier against infection. It also regulates the proliferation and differentiation of EMBRYONIC STEM CELLS. Antigen, CD326,CD326 Protein,ESA Antigen,Ep-CAM,EpCAM,Epithelial Specific Antigen,GA 733 Tumor-Associated Antigen,GA733 Antigen,GA733 Tumor-Associated Antigen,Tacstd1 Protein,Tumor-Associated Antigen GA733,Antigen, ESA,Antigen, Epithelial Specific,Antigen, GA733,CD326 Antigen,GA 733 Tumor Associated Antigen,GA733 Tumor Associated Antigen,GA733, Tumor-Associated Antigen,Tumor Associated Antigen GA733,Tumor-Associated Antigen, GA733
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000951 Antigens, Neoplasm Proteins, glycoprotein, or lipoprotein moieties on surfaces of tumor cells that are usually identified by monoclonal antibodies. Many of these are of either embryonic or viral origin. Neoplasm Antigens,Tumor Antigen,Tumor Antigens,Antigen, Tumor,Antigens, Tumor
D015815 Cell Adhesion Molecules Surface ligands, usually glycoproteins, that mediate cell-to-cell adhesion. Their functions include the assembly and interconnection of various vertebrate systems, as well as maintenance of tissue integration, wound healing, morphogenic movements, cellular migrations, and metastasis. Cell Adhesion Molecule,Intercellular Adhesion Molecule,Intercellular Adhesion Molecules,Leukocyte Adhesion Molecule,Leukocyte Adhesion Molecules,Saccharide-Mediated Cell Adhesion Molecules,Saccharide Mediated Cell Adhesion Molecules,Adhesion Molecule, Cell,Adhesion Molecule, Intercellular,Adhesion Molecule, Leukocyte,Adhesion Molecules, Cell,Adhesion Molecules, Intercellular,Adhesion Molecules, Leukocyte,Molecule, Cell Adhesion,Molecule, Intercellular Adhesion,Molecule, Leukocyte Adhesion,Molecules, Cell Adhesion,Molecules, Intercellular Adhesion,Molecules, Leukocyte Adhesion

Related Publications

Jonathan L McQualter, and Ivan Bertoncello
November 2014, Stem cells and development,
Jonathan L McQualter, and Ivan Bertoncello
January 2017, Methods in molecular biology (Clifton, N.J.),
Jonathan L McQualter, and Ivan Bertoncello
January 2013, Methods in molecular biology (Clifton, N.J.),
Jonathan L McQualter, and Ivan Bertoncello
October 2006, Cell biology international,
Jonathan L McQualter, and Ivan Bertoncello
January 2022, Methods in molecular biology (Clifton, N.J.),
Jonathan L McQualter, and Ivan Bertoncello
August 1975, Cancer research,
Jonathan L McQualter, and Ivan Bertoncello
December 2016, Journal of cellular physiology,
Jonathan L McQualter, and Ivan Bertoncello
May 2014, Journal of visualized experiments : JoVE,
Jonathan L McQualter, and Ivan Bertoncello
December 2011, Current protocols in stem cell biology,
Jonathan L McQualter, and Ivan Bertoncello
January 2009, In vitro cellular & developmental biology. Animal,
Copied contents to your clipboard!