Reactivity of chicken liver xanthine dehydrogenase containing modified flavins. 1989

T Nishino, and T Nishino, and L M Schopfer, and V Massey
Department of Biochemistry, Yokohama City University School of Medicine, Japan.

Native FAD was removed from chicken liver xanthine dehydrogenase (XDH) and replaced with a number of artificial flavins of different redox potential. Dithionite titration of the 2-thio-FAD- or 4-thio-FAD (high potential)-containing enzymes showed that the first center to be reduced was the flavin. With native enzyme, iron-sulfur centers are the first to be reduced. With the low potential flavin, 6-OH-FAD, the enzyme-bound flavin was the last center to be reduced in reductive titration with xanthine. These shifts in the reduction profile support the hypothesis that the distribution of reducing equivalents in multi-center oxidation-reduction enzymes of this type is determined by the relative potentials of the centers. The reaction of molecular oxygen with fully reduced 2-thio-FAD XDH or 4-thio-FAD XDH resulted in 5 electron eq being released in a fast phase and one in a slow phase. Reduction of these enzymes by xanthine was limited at a rate comparable to that for the release of urate from native XDH. Xanthine/O2 turnover with these enzymes (and native XDH) resulted in approximately 40-50% of the xanthine reducing equivalents appearing as superoxide. Steady state turnover experiments involving all modified flavin-containing enzymes, as well as native enzyme, showed that shifting the flavin potential either positive or negative relative to FAD caused a decrease in catalytic activity in the xanthine/NAD reductase reaction. In the case of the xanthine/O2 reductase activity, there is no simple obvious relationship between the activity and the redox potential of the reconstituted flavin.

UI MeSH Term Description Entries
D007658 Ketone Oxidoreductases Oxidoreductases that are specific for KETONES. Oxidoreductases, Ketone
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D005182 Flavin-Adenine Dinucleotide A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) FAD,Flavitan,Dinucleotide, Flavin-Adenine,Flavin Adenine Dinucleotide
D005415 Flavins Derivatives of the dimethylisoalloxazine (7,8-dimethylbenzo[g]pteridine-2,4(3H,10H)-dione) skeleton. Flavin derivatives serve an electron transfer function as ENZYME COFACTORS in FLAVOPROTEINS.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T Nishino, and T Nishino, and L M Schopfer, and V Massey
October 1955, Biochimica et biophysica acta,
T Nishino, and T Nishino, and L M Schopfer, and V Massey
September 1991, The Journal of biological chemistry,
T Nishino, and T Nishino, and L M Schopfer, and V Massey
January 1988, The Biochemical journal,
T Nishino, and T Nishino, and L M Schopfer, and V Massey
September 1972, Revista espanola de fisiologia,
T Nishino, and T Nishino, and L M Schopfer, and V Massey
November 1955, The Journal of biological chemistry,
T Nishino, and T Nishino, and L M Schopfer, and V Massey
September 1967, The Journal of biological chemistry,
T Nishino, and T Nishino, and L M Schopfer, and V Massey
October 1979, Biotechnology and bioengineering,
T Nishino, and T Nishino, and L M Schopfer, and V Massey
February 1955, Biochimica et biophysica acta,
T Nishino, and T Nishino, and L M Schopfer, and V Massey
October 1971, Archives of biochemistry and biophysics,
Copied contents to your clipboard!