Antidiarrheal properties of supraspinal mu and delta and peripheral mu, delta and kappa opioid receptors: inhibition of diarrhea without constipation. 1989

J E Shook, and P K Lemcke, and C A Gehrig, and V J Hruby, and T F Burks
Department of Pharmacology, University of Arizona Health Sciences Center, Tucson.

We evaluated the ability of mu [morphine, Tyr-Pro-N-MePhe-D-Pro-NH2 (PLO17)], delta (Tyr-D-Pen-Gly-Phe-D-Pen) (DPDPE) and kappa [U50,488H, (trans-3,4-dichloro-N-methyl-N-(2-(1-pyr-rolidinyl) cyclo-hexyl)benzeneacetamine)] opioid receptor selective agonists to inhibit diarrhea induced by castor oil (0.6 ml p.o.) in mice after supraspinal (i.c.v.) and peripheral (s.c.) administration. The antidiarrheal potency of each compound was compared to its analgesic and gastrointestinal antitransit potency when given by the same route of administration. When administered i.c.v., morphine, PLO17 and DPDPE inhibited diarrhea in a dose-related fashion. The mu agonists, morphine and PLO17, given i.c.v, inhibited diarrhea at doses much lower than those needed to produce analgesia or to inhibit gastrointestinal transit. DPDPE (i.c.v.) was equipotent in inhibiting diarrhea and in eliciting analgesia, but did not effect the rate of transit. U50,488H (i.c.v.) inhibited diarrhea only at extremely high doses which also caused profound postural-motor incapacitance. U50,488H given i.c.v. had no effect on transit at any dose. When given peripherally, morphine, PLO17, DPDPE and U50,488H all inhibited diarrhea in a dose-related fashion. All four compounds inhibited diarrhea at doses much below those needed to cause analgesia. Morphine s.c. and PLO17 s.c. both inhibited diarrhea at doses lower than those required to inhibit transit. DPDPE s.c. and U50,488H s.c. had no effect on transit at any dose. The antidiarrheal effects of i.c.v. morphine, i.c.v. PLO17 and i.c.v. DPDPE were antagonized by pretreatment with 1 microgram i.c.v. of naltrexone.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007276 Injections, Intraventricular Injections into the cerebral ventricles. Intraventricular Injections,Injection, Intraventricular,Intraventricular Injection
D008297 Male Males
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D003248 Constipation Infrequent or difficult evacuation of FECES. These symptoms are associated with a variety of causes, including low DIETARY FIBER intake, emotional or nervous disturbances, systemic and structural disorders, drug-induced aggravation, and infections. Colonic Inertia,Dyschezia
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004723 Endorphins One of the three major groups of endogenous opioid peptides. They are large peptides derived from the PRO-OPIOMELANOCORTIN precursor. The known members of this group are alpha-, beta-, and gamma-endorphin. The term endorphin is also sometimes used to refer to all opioid peptides, but the narrower sense is used here; OPIOID PEPTIDES is used for the broader group. Endorphin
D004744 Enkephalin, Methionine One of the endogenous pentapeptides with morphine-like activity. It differs from LEU-ENKEPHALIN by the amino acid METHIONINE in position 5. Its first four amino acid sequence is identical to the tetrapeptide sequence at the N-terminal of BETA-ENDORPHIN. Methionine Enkephalin,5-Methionine Enkephalin,Met(5)-Enkephalin,Met-Enkephalin,5 Methionine Enkephalin,Enkephalin, 5-Methionine,Met Enkephalin

Related Publications

J E Shook, and P K Lemcke, and C A Gehrig, and V J Hruby, and T F Burks
July 1990, The Journal of pharmacology and experimental therapeutics,
J E Shook, and P K Lemcke, and C A Gehrig, and V J Hruby, and T F Burks
July 1997, European journal of pharmacology,
J E Shook, and P K Lemcke, and C A Gehrig, and V J Hruby, and T F Burks
March 1989, The Journal of pharmacology and experimental therapeutics,
J E Shook, and P K Lemcke, and C A Gehrig, and V J Hruby, and T F Burks
March 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J E Shook, and P K Lemcke, and C A Gehrig, and V J Hruby, and T F Burks
May 2007, The Journal of pharmacology and experimental therapeutics,
J E Shook, and P K Lemcke, and C A Gehrig, and V J Hruby, and T F Burks
April 1986, European journal of pharmacology,
J E Shook, and P K Lemcke, and C A Gehrig, and V J Hruby, and T F Burks
December 1991, European journal of pharmacology,
J E Shook, and P K Lemcke, and C A Gehrig, and V J Hruby, and T F Burks
February 1994, Molecular pharmacology,
J E Shook, and P K Lemcke, and C A Gehrig, and V J Hruby, and T F Burks
September 1999, European journal of pharmacology,
J E Shook, and P K Lemcke, and C A Gehrig, and V J Hruby, and T F Burks
June 2001, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!