Closely related transcripts encoded by the neurogenic gene complex enhancer of split of Drosophila melanogaster. 1989

C Klämbt, and E Knust, and K Tietze, and J A Campos-Ortega
Institut für Entwicklungsphysiologie, Universität zu Köln, FRG.

Genetic evidence suggests that E(spl), one of the neurogenic loci of Drosophila, is a gene complex comprising an as yet incompletely established number of transcription units. In order to correlate the various transcription units with E(spl) functions, wild-type flies were transformed with genomic DNA encoding the transcription unit m8 from the mutant E(spl)D, which was known to be altered in embryos carrying this mutant allele. Transformants show the same dominant enhancement of the spl phenotype as E(spl)D itself. Since m8 has a virtually identical pattern of expression as m4, m5 and m7, we have determined the sequence of these four transcripts. The deduced protein products of m5, m7 and m8 exhibit extensive sequence homology with each other. All three encode a sequence similar to one of the conserved domains of representatives of the vertebrate myc gene family which is also present in the deduced protein sequences of the Drosophila achaete-scute gene complex. Sequence analysis of the m8 transcription unit in the E(spl)D mutation revealed several DNA lesions. One of the lesions is a deletion in the region upstream of the transcription start site. Another lesion is a deletion in the coding region that leads to a shorter protein which, in addition, differs in its carboxy-terminal end from the wild-type protein by the presence of nine amino acids.

UI MeSH Term Description Entries
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D004475 Ectoderm The outer of the three germ layers of an embryo. Apical Ectodermal Ridge,Apical Ectodermal Ridges,Ectodermal Ridge, Apical,Ectoderms
D005260 Female Females
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

C Klämbt, and E Knust, and K Tietze, and J A Campos-Ortega
December 1987, The EMBO journal,
C Klämbt, and E Knust, and K Tietze, and J A Campos-Ortega
June 2004, Genesis (New York, N.Y. : 2000),
C Klämbt, and E Knust, and K Tietze, and J A Campos-Ortega
March 2005, Molecular biology and evolution,
C Klämbt, and E Knust, and K Tietze, and J A Campos-Ortega
January 1991, Journal of neurogenetics,
C Klämbt, and E Knust, and K Tietze, and J A Campos-Ortega
July 1987, Developmental biology,
C Klämbt, and E Knust, and K Tietze, and J A Campos-Ortega
February 1999, Mechanisms of development,
C Klämbt, and E Knust, and K Tietze, and J A Campos-Ortega
October 1992, Genetics,
C Klämbt, and E Knust, and K Tietze, and J A Campos-Ortega
September 1994, Molecular & general genetics : MGG,
C Klämbt, and E Knust, and K Tietze, and J A Campos-Ortega
June 2010, Gene,
C Klämbt, and E Knust, and K Tietze, and J A Campos-Ortega
December 1986, Molecular and cellular biology,
Copied contents to your clipboard!