Three-dimensional conformal planning with low-segment multicriteria intensity modulated radiation therapy optimization. 2015

Fazal Khan, and David Craft
Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.

OBJECTIVE The purpose of this study was to evaluate automated multicriteria optimization (MCO), which is designed for intensity modulated radiation therapy (IMRT) but invoked with limited segmentation, to efficiently produce high-quality 3-dimensional (3D) conformal radiation therapy (3D-CRT) plans. METHODS Treatment for 10 patients previously planned with 3D-CRT to various disease sites (brain, breast, lung, abdomen, pelvis) was replanned with a low-segment inverse MCO technique. The MCO-3D plans used the same beam geometry of the original 3D plans but were limited to an energy of 6 MV. The MCO-3D plans were optimized with fluence-based MCO IMRT and then, after MCO navigation, segmented with a low number of segments. The 3D and MCO-3D plans were compared by evaluating mean dose for all structures, D95 (dose that 95% of the structure receives) and homogeneity indexes for targets, D1 and clinically appropriate dose-volume objectives for individual organs at risk (OARs), monitor units, and physician preference. RESULTS The MCO-3D plans reduced the mean doses to OARs (41 of a total of 45 OARs had a mean dose reduction; P << .01) and monitor units (7 of 10 plans had reduced monitor units; the average reduction was 17% [P = .08]) while maintaining clinical standards for coverage and homogeneity of target volumes. All MCO-3D plans were preferred by physicians over their corresponding 3D plans. CONCLUSIONS High-quality 3D plans can be produced by use of MCO-IMRT optimization, resulting in automated field-in-field-type plans with good monitor unit efficiency. Adoption of this technology in a clinic could improve plan quality and streamline treatment plan production by using a single system applicable to both IMRT and 3D planning.

UI MeSH Term Description Entries
D008297 Male Males
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D011880 Radiotherapy Planning, Computer-Assisted Computer-assisted mathematical calculations of beam angles, intensities of radiation, and duration of irradiation in radiotherapy. Computer-Assisted Radiotherapy Planning,Dosimetry Calculations, Computer-Assisted,Planning, Computer-Assisted Radiotherapy,Calculation, Computer-Assisted Dosimetry,Calculations, Computer-Assisted Dosimetry,Computer Assisted Radiotherapy Planning,Computer-Assisted Dosimetry Calculation,Computer-Assisted Dosimetry Calculations,Dosimetry Calculation, Computer-Assisted,Dosimetry Calculations, Computer Assisted,Planning, Computer Assisted Radiotherapy,Radiotherapy Planning, Computer Assisted
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D050397 Radiotherapy, Intensity-Modulated CONFORMAL RADIOTHERAPY that combines several intensity-modulated beams to provide improved dose homogeneity and highly conformal dose distributions. Helical Tomotherapy,Intensity-Modulated Arc Therapy,Volumetric-Modulated Arc Therapy,Arc Therapies, Intensity-Modulated,Arc Therapies, Volumetric-Modulated,Arc Therapy, Intensity-Modulated,Arc Therapy, Volumetric-Modulated,Helical Tomotherapies,Intensity Modulated Arc Therapy,Intensity-Modulated Arc Therapies,Intensity-Modulated Radiotherapies,Intensity-Modulated Radiotherapy,Radiotherapies, Intensity-Modulated,Radiotherapy, Intensity Modulated,Therapies, Intensity-Modulated Arc,Therapies, Volumetric-Modulated Arc,Therapy, Intensity-Modulated Arc,Therapy, Volumetric-Modulated Arc,Tomotherapies, Helical,Tomotherapy, Helical,Volumetric Modulated Arc Therapy,Volumetric-Modulated Arc Therapies

Related Publications

Fazal Khan, and David Craft
January 2003, Medical dosimetry : official journal of the American Association of Medical Dosimetrists,
Fazal Khan, and David Craft
November 2008, International journal of radiation oncology, biology, physics,
Fazal Khan, and David Craft
January 2015, Diseases of the esophagus : official journal of the International Society for Diseases of the Esophagus,
Fazal Khan, and David Craft
October 2013, Technology in cancer research & treatment,
Copied contents to your clipboard!