Comparative studies on the discrepant fragmentation mechanisms of the GLy-Asp-Gly-Arg and Arg-Gly-Asp-Gly: evidence for the mobile proton model. 2014


The fragmentation mechanisms of singly protonated Gly-Asp-Gly-Arg (GDGRI and Arg-Gly-Asp-Gly (RGDGJ were investigated by mass spectrometry and theoretical methods. Both protonated molecules are fragmented mainly at the Asp-Gly amide bond C-terminal to Asp, as supported by quantum chemical calculations. Charge distributions of C and N atoms (Qc + QN) on the amide bonds were collected when the ionizing proton was fixed at different nitrogen atoms along the backbone for each peptide. Compared with the neutral molecules, the total charges of C and N atoms (Qc + QN] for the singly charged peptides tended to be negative when the proton was located at the backbone nitrogen atoms. A relatively larger value of QC + QN corresponds to a higher trend of fragmentation, which is consistent with the experimental relative abundances data that the predominant ions are y2 for [GDGR + H]+ and b3 for [RGDG + H]+. Also, the anhydride mechanism driven by the C-terminal COOH for [RGDG + H]+ was explored by a quantum-mechanical/molecular-mechanical method. Calculations indicate that the protonated peptide can be cleaved through an unusual charge-directed pathway by forming a salt bridge at the C-termini. The formation of the anhydride linkage is much more feasible since this process needs very little energy and is exother- mic, though the subsequent nucleophilic attack on the Asp carbonyl carbon is more difficult. The combined experimental and theoretical methods substantiate the mobile proton model, which opens a way to analyze quantitatively the discrepant fragmentation of dissociated peptides in peptide/protein identification.

UI MeSH Term Description Entries
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009584 Nitrogen An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D011789 Quantum Theory The theory that the radiation and absorption of energy take place in definite quantities called quanta (E) which vary in size and are defined by the equation E Quantum Theories,Theories, Quantum,Theory, Quantum
D002244 Carbon A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel. Carbon-12,Vitreous Carbon,Carbon 12,Carbon, Vitreous
D000577 Amides Organic compounds containing the -CO-NH2 radical. Amides are derived from acids by replacement of -OH by -NH2 or from ammonia by the replacement of H by an acyl group. (From Grant & Hackh's Chemical Dictionary, 5th ed) Amide
D021241 Spectrometry, Mass, Electrospray Ionization A mass spectrometry technique used for analysis of nonvolatile compounds such as proteins and macromolecules. The technique involves preparing electrically charged droplets from analyte molecules dissolved in solvent. The electrically charged droplets enter a vacuum chamber where the solvent is evaporated. Evaporation of solvent reduces the droplet size, thereby increasing the coulombic repulsion within the droplet. As the charged droplets get smaller, the excess charge within them causes them to disintegrate and release analyte molecules. The volatilized analyte molecules are then analyzed by mass spectrometry. ESI Mass Spectrometry,Electrospray Ionization Mass Spectrometry,Mass Spectrometry, ESI,Spectrometry, ESI Mass

Related Publications

No sufficiently related or similar publications found.

Copied contents to your clipboard!