8-Azido-2'-O-dansyl-ATP. A fluorescent photoaffinity reagent for ATP-binding proteins and its application to adenylate kinase. 1989

H Chuan, and J Lin, and J H Wang
Bioenergetics Laboratory, State University of New York, Buffalo 14214-3094.

The photoaffinity reagent 8-azido-2'-O-[14C]dansyl-ATP (AD-ATP) has been synthesized for labeling and monitoring the active sites of ATPases and kinases. In its first application, the reagent is used to explore the active site of adenylate kinase from rabbit muscle. In the dark, AD-ATP inhibits adenylate kinase reversibly and competitively with KI = 0.25 +/- 0.01 microM. Under weak UV illumination, AD-ATP labels adenylate kinase irreversibly. The photoinactivation data also show KI = 0.25 +/- 0.02 microM. The ratio (r) of the specific activity of AD-ATP-labeled adenylate kinase to that of the unlabeled enzyme has been determined as a function of the number (n) of label/enzyme. The linear plot of r versus n with slope equal to -1 shows that the labeling is very specific, i.e. each label completely inactivates an enzyme molecule. After the labeled enzyme was partially hydrolyzed and the radioactive peptides analyzed and sequenced, it was found that Leu-115, Cys-25, and probably His-36 were labeled, in agreement with previous conclusions on the structure of the active site of this enzyme based on amino acid sequence, x-ray diffraction, and NMR studies. The environment-sensitive fluorescent dansyl group of AD-ATP can function as an in situ probe for monitoring ligand or conformation changes at the active site. The fluorescence of AD-ATP-labeled enzyme with n = 0.9 is not affected by ATP but increases with the concentration of AMP in solution. This observation is also in agreement with the previous conclusion that ATP does not bind to the AMP site of adenylate kinase. The observed enhancement of fluorescence indicates that binding of AMP by this enzyme causes environmental change at its ATP site. The possible usefulness of AD-ATP as an effective biological inhibitor or as a molecular probe for studying the structure and regulation of ATP-binding proteins is discussed.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003619 Dansyl Compounds Compounds that contain a 1-dimethylaminonaphthalene-5-sulfonyl group. Dimethylaminonaphthalenesulfonyl Compounds,Compounds, Dansyl,Compounds, Dimethylaminonaphthalenesulfonyl
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000263 Adenylate Kinase An enzyme that catalyzes the phosphorylation of AMP to ADP in the presence of ATP or inorganic triphosphate. EC 2.7.4.3. Myokinase,AMP Kinase,ATP-AMP Phosphotransferase,ATP-AMP Transphosphorylase,Adenylokinase,ATP AMP Phosphotransferase,ATP AMP Transphosphorylase,Kinase, AMP,Kinase, Adenylate,Phosphotransferase, ATP-AMP,Transphosphorylase, ATP-AMP
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling

Related Publications

H Chuan, and J Lin, and J H Wang
July 1980, Biochemical and biophysical research communications,
H Chuan, and J Lin, and J H Wang
April 1988, Experimental eye research,
H Chuan, and J Lin, and J H Wang
February 1996, European journal of biochemistry,
H Chuan, and J Lin, and J H Wang
June 1993, The Biochemical journal,
Copied contents to your clipboard!