A sorting signal for the basolateral delivery of the vesicular stomatitis virus (VSV) G protein lies in its luminal domain: analysis of the targeting of VSV G-influenza hemagglutinin chimeras. 1989

T Compton, and I E Ivanov, and T Gottlieb, and M Rindler, and M Adesnik, and D D Sabatini
Department of Cell Biology, New York University Medical Center, New York 10016.

When synthesized in polarized epithelial cells, the envelope glycoproteins hemagglutinin of influenza and G of vesicular stomatitis virus are targeted to the apical and basolateral plasma membranes, respectively. To determine which portions of these transmembrane proteins contain information necessary for their sorting, the behavior of two different G-hemagglutinin chimeric polypeptides, consisting of all or nearly all the luminal portion of the vesicular stomatitis virus G protein linked to C-terminal segments of influenza hemagglutinin that included its transmembrane and cytoplasmic domains, was studied in MDCK cells transformed with the corresponding cDNAs. Both chimeras were transported from the endoplasmic reticulum to the Golgi apparatus and from there to the cell surface with the same rapid kinetics as the intact G protein. By using a cell surface immunoprecipitation assay with monolayers cultured on permeable filters that allows the recovery of labeled protein molecules present in each cell surface domain, it was found that both chimeric proteins as well as the intact G protein were delivered almost exclusively to the basolateral surface. This polarized distribution of the polypeptides did not change during a subsequent 90-min chase period, although during this time a large fraction of the glycoprotein molecules underwent degradation. In addition, a small fraction of the cell surface-associated glycoprotein molecules shed their ectoplasmic segments into the basolateral compartment, apparently as a result of a proteolytic cleavage. Immunofluorescence on transverse frozen sections and immunoelectron microscopy revealed a prominent accumulation of the chimeric polypeptides in the lateral cell membranes, with lesser amounts on the basal and apical surfaces. These results indicate that information specifying the basolateral transport of the G glycoprotein is located within the first 426 N-terminal amino acids of its ectoplasmic portion.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002678 Chimera An individual that contains cell populations derived from different zygotes. Hybrids,Chimeras,Hybrid
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D006389 Hemagglutinins, Viral Specific hemagglutinin subtypes encoded by VIRUSES. Viral Hemagglutinin,Viral Hemagglutinins,Hemagglutinin, Viral
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

T Compton, and I E Ivanov, and T Gottlieb, and M Rindler, and M Adesnik, and D D Sabatini
February 2024, Biotechnology and bioengineering,
T Compton, and I E Ivanov, and T Gottlieb, and M Rindler, and M Adesnik, and D D Sabatini
March 1998, The Journal of cell biology,
T Compton, and I E Ivanov, and T Gottlieb, and M Rindler, and M Adesnik, and D D Sabatini
April 2012, Cold Spring Harbor protocols,
T Compton, and I E Ivanov, and T Gottlieb, and M Rindler, and M Adesnik, and D D Sabatini
August 1985, The Journal of cell biology,
T Compton, and I E Ivanov, and T Gottlieb, and M Rindler, and M Adesnik, and D D Sabatini
November 1987, The Journal of biological chemistry,
T Compton, and I E Ivanov, and T Gottlieb, and M Rindler, and M Adesnik, and D D Sabatini
January 2007, Current protocols in human genetics,
T Compton, and I E Ivanov, and T Gottlieb, and M Rindler, and M Adesnik, and D D Sabatini
February 1993, The Journal of biological chemistry,
T Compton, and I E Ivanov, and T Gottlieb, and M Rindler, and M Adesnik, and D D Sabatini
July 1971, Annales de l'Institut Pasteur,
T Compton, and I E Ivanov, and T Gottlieb, and M Rindler, and M Adesnik, and D D Sabatini
May 1973, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
Copied contents to your clipboard!