Adrenergic control of renin during dietary sodium deprivation in conscious dogs. 1989

H Hisa, and Y H Chen, and K J Radke, and J L Izzo, and C D Sladek, and M L Blair
Department of Physiology, School of Medicine, University of Rochester, New York 14642.

These experiments evaluated the contribution of alpha- and beta-adrenergic stimulation to plasma renin activity (PRA) during early and long-term dietary sodium restriction, compared with normal sodium intake. Uninephrectomized conscious dogs with catheters in the aorta, vena cava, and remaining renal artery were studied during normal sodium diet (approximately 70 meq/day), after 2-3 days of low-sodium diet (5-7 meq/day), and after greater than or equal to 2 wk of low-sodium diet. Direct renal arterial (ira) infusion of phenoxybenzamine plus propranolol decreased PRA by similar proportions (39-48%) during all three states of dietary sodium intake. The PRA achieved after adrenergic blockade remained higher (P less than 0.05) during early and long-term sodium restriction than during normal sodium intake. The effect on PRA of ira infusion of propranolol alone was not different from that of phenoxybenzamine plus propranolol during normal or low-sodium diet, and the magnitude of decrease in PRA during low-sodium diet was the same whether propranolol (1 microgram.kg-1.min-1) was infused ira or intravenously. In summary, beta-adrenergic stimulation accounts for similar proportions of PRA during early and long-term dietary sodium restriction and during normal sodium intake. Renal alpha-adrenoceptors appear to play little or no role in control of PRA under these conditions.

UI MeSH Term Description Entries
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010643 Phenoxybenzamine An alpha-adrenergic antagonist with long duration of action. It has been used to treat hypertension and as a peripheral vasodilator. Dibenylene,Dibenyline,Dibenziran,Dibenzylin,Dibenzyline,Dibenzyran,Phenoxybenzamine Hydrochloride,Hydrochloride, Phenoxybenzamine
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001810 Blood Volume Volume of circulating BLOOD. It is the sum of the PLASMA VOLUME and ERYTHROCYTE VOLUME. Blood Volumes,Volume, Blood,Volumes, Blood

Related Publications

H Hisa, and Y H Chen, and K J Radke, and J L Izzo, and C D Sladek, and M L Blair
June 1991, The American journal of physiology,
H Hisa, and Y H Chen, and K J Radke, and J L Izzo, and C D Sladek, and M L Blair
August 1995, Canadian journal of physiology and pharmacology,
H Hisa, and Y H Chen, and K J Radke, and J L Izzo, and C D Sladek, and M L Blair
January 1968, The American journal of physiology,
H Hisa, and Y H Chen, and K J Radke, and J L Izzo, and C D Sladek, and M L Blair
February 2009, American journal of physiology. Regulatory, integrative and comparative physiology,
H Hisa, and Y H Chen, and K J Radke, and J L Izzo, and C D Sladek, and M L Blair
December 1982, The American journal of physiology,
H Hisa, and Y H Chen, and K J Radke, and J L Izzo, and C D Sladek, and M L Blair
November 1979, The American journal of physiology,
H Hisa, and Y H Chen, and K J Radke, and J L Izzo, and C D Sladek, and M L Blair
May 1982, The American journal of physiology,
H Hisa, and Y H Chen, and K J Radke, and J L Izzo, and C D Sladek, and M L Blair
May 1978, The American journal of physiology,
H Hisa, and Y H Chen, and K J Radke, and J L Izzo, and C D Sladek, and M L Blair
April 1968, Clinical science,
H Hisa, and Y H Chen, and K J Radke, and J L Izzo, and C D Sladek, and M L Blair
March 1979, The American journal of physiology,
Copied contents to your clipboard!