Topoisomerase II-mediated DNA cleavage activity induced by ellipticines on the human tumor cell line N417. 1989

E Multon, and J F Riou, and D LeFevre, and J C Ahomadegbe, and G Riou
Laboratoire de Pharmacologie Clinique, Moléculaire Institut Gustave Roussy, Villejuif, France.

Ellipticine derivatives have been shown to induce DNA strand breaks by trapping DNA-topoisomerase II (Topo II) in an intermediary covalent complex between Topo II and DNA which could be related to their cytotoxic effects. We report here that Celiptium and Detalliptinium, two ellipticine derivatives clinically used for their antitumoral properties against breast cancer, exhibit the highest in vitro activity on Topo II DNA cleavage reaction and decatenation among a series of 14 ellipticine derivatives. The in vitro cleavage site specificity in pBR 322 plasmid DNA and in a human c-myc gene inserted in a lambda phage DNA is identical for both ellipticines, but different from m-AMSA, another Topo II related antitumoral agent. Recently, it has been shown that the ellipticine derivative Celiptium presents a strong cytotoxic activity in vitro on different human tumors including small cell lung carcinoma (SCLC). However, the studies that involved Topo II as a target for ellipticine derivatives have been performed only by using animal tumor cell lines. Therefore we have studied the in vivo DNA cleavage activity of Celiptium and Detalliptinium on a human SCLC cell line, NCI N417, comparatively to that obtained with m-AMSA. The respective IC50 on cell growth are 9, 8 and 1 microM for Celiptium, Detalliptinium and m-AMSA, respectively. Using the alkaline elution technique, we have observed that Celiptium and Detalliptinium exhibit a weak cleavage activity on genomic DNA from whole cells. The ellipticines are about 50 times less potent than m-AMSA in inducing DNA strand breaks. Analysis of in vivo c-myc gene cleavage by Southern blot hybridization also demonstrates a lack of activity of the ellipticine derivatives as no gene cleavage could be detected up to 50 microM of the drug. With m-AMSA, c-myc gene cleavage is detected at a concentration of 0.2 microM, which indicates that this methodology is less sensitive in detecting DNA strand breaks than is the alkaline elution. Further studies of the drug effect on isolated nuclei by alkaline elution also show that the DNA cleavage activity of Celiptium and Detalliptinium is increased when compared to whole cells. Our data indicate that these two drugs have a weaker cytotoxic effect than m-AMSA on NCI N417 cell line, due to a limited access to the cell nucleus rather than to a lack of activity on Topo II as assessed by in vitro and isolated nuclei experiments.

UI MeSH Term Description Entries
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D004611 Ellipticines Pyrido-CARBAZOLES originally discovered in the bark of OCHROSIA ELLIPTICA. They inhibit DNA and RNA synthesis and have immunosuppressive properties.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000470 Alkaloids Organic nitrogenous bases. Many alkaloids of medical importance occur in the animal and vegetable kingdoms, and some have been synthesized. (Grant & Hackh's Chemical Dictionary, 5th ed) Alkaloid,Plant Alkaloid,Plant Alkaloids,Alkaloid, Plant,Alkaloids, Plant
D000677 Amsacrine An aminoacridine derivative that intercalates into DNA and is used as an antineoplastic agent. m-AMSA,AMSA,AMSA P-D,Amsacrina,Amsidine,Amsidyl,Cain's Acridine,NSC-141549,NSC-156303,NSC-249992,SN-11841,SN11841,meta-AMSA,AMSA P D,AMSA PD,Cain Acridine,Cains Acridine,NSC 141549,NSC 156303,NSC 249992,NSC141549,NSC156303,NSC249992,SN 11841,meta AMSA

Related Publications

E Multon, and J F Riou, and D LeFevre, and J C Ahomadegbe, and G Riou
January 1991, Anticancer research,
E Multon, and J F Riou, and D LeFevre, and J C Ahomadegbe, and G Riou
January 1990, Cancer research,
E Multon, and J F Riou, and D LeFevre, and J C Ahomadegbe, and G Riou
November 2005, The Journal of biological chemistry,
E Multon, and J F Riou, and D LeFevre, and J C Ahomadegbe, and G Riou
August 1995, Biochemical and biophysical research communications,
E Multon, and J F Riou, and D LeFevre, and J C Ahomadegbe, and G Riou
May 1992, Cancer research,
E Multon, and J F Riou, and D LeFevre, and J C Ahomadegbe, and G Riou
April 1991, The Journal of biological chemistry,
E Multon, and J F Riou, and D LeFevre, and J C Ahomadegbe, and G Riou
February 1991, Plant physiology,
E Multon, and J F Riou, and D LeFevre, and J C Ahomadegbe, and G Riou
November 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
E Multon, and J F Riou, and D LeFevre, and J C Ahomadegbe, and G Riou
September 1997, Bioorganic & medicinal chemistry,
E Multon, and J F Riou, and D LeFevre, and J C Ahomadegbe, and G Riou
May 2014, Chemical research in toxicology,
Copied contents to your clipboard!