Two components of calcium channel current in embryonic chick skeletal muscle cells developing in culture. 1989

M Kano, and K Wakuta, and R Satoh
Department of Physiology, School of Medicine, Kitasato University, Kanagawa, Japan.

The properties of the Ca channel currents in chick skeletal muscle cells (myoballs) in culture were studied using a suction pipette technique which allows internal perfusion and voltage clamp. The Ca channel currents as carried by Ba ions were recorded, after suppression of currents through ordinary Na, K and Cl channels by absence of Na, K and Cl ions, by external TEA, by internal EGTA and by observing the Ba currents instead of the Ca currents. Two components of Ba current could be distinguished. One was present only if the myoballs were held at relatively negative holding potentials below -50 mV. This component first became detectable at clamp potentials of about -50 mV and reached a maximum between -10 and -20 mV. During long clamp steps, it became inactivated completely. The inactivation process of this component at a clamp potential of -30 mV was well fitted to a single exponential with a time constant of about -20 ms. Half-maximal steady-state inactivation was observed at -63 mV. The other component persisted even at relatively positive holding potentials above -40 mV, was observed during clamp pulses to -20 mV and above, and reached a maximum between +10 and +20 mV. This component inactivated very little; a substantial fraction of this component remained at the end of clamp pulses lasting 1 s. The inactivation process of this component at a clamp potential of -10 mV apparently followed a single exponential with a time constant of about 1 s. Half-maximal steady-state inactivation was attained at -33 mV. Both components of Ba current were blocked by Co ions, but organic Ca channel blocker D600 preferentially blocked the high-threshold, slowly inactivating component. The relationship between the current amplitude and the concentration of the external Ba ions was different between the two components. Furthermore, the two components of Ba current also differed in their developmental profile. These findings demonstrate the existence of two distinct types of Ca channels in the early stages of chick muscle cell development.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005711 Gallopamil Coronary vasodilator that is an analog of iproveratril (VERAPAMIL) with one more methoxy group on the benzene ring. Methoxyverapamil,D-600,D600,Elgiprona,Gallobeta,Gallopamil Hydrochloride,Prebet,Procorum,gallopamil von ct,D 600,Hydrochloride, Gallopamil
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001464 Barium An element of the alkaline earth group of metals. It has an atomic symbol Ba, atomic number 56, and atomic weight 138. All of its acid-soluble salts are poisonous.
D013757 Tetraethylammonium Compounds Quaternary ammonium compounds that consist of an ammonium cation where the central nitrogen atom is bonded to four ethyl groups. Tetramon,Tetrylammonium,Compounds, Tetraethylammonium
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels

Related Publications

M Kano, and K Wakuta, and R Satoh
September 1992, Neuroscience letters,
M Kano, and K Wakuta, and R Satoh
June 1993, Pflugers Archiv : European journal of physiology,
M Kano, and K Wakuta, and R Satoh
October 1989, Canadian journal of physiology and pharmacology,
M Kano, and K Wakuta, and R Satoh
October 1989, The Journal of physiology,
M Kano, and K Wakuta, and R Satoh
December 1975, Journal of cellular physiology,
M Kano, and K Wakuta, and R Satoh
October 1971, Journal of cellular physiology,
M Kano, and K Wakuta, and R Satoh
June 1972, Journal of cellular physiology,
M Kano, and K Wakuta, and R Satoh
January 2010, Methods in molecular biology (Clifton, N.J.),
M Kano, and K Wakuta, and R Satoh
September 1983, The Journal of general physiology,
Copied contents to your clipboard!