Temporal integration of alpha 1-adrenergic responses in BC3H-1 muscle cells. Regulation of glycogen phosphorylase activity. 1989

S Toranji, and R D Brown
Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla 92093.

Regulation of Ca2+-dependent glycogen phosphorylase activity by alpha 1-adrenergic and H1-histamine receptors has been examined in BC3H-1 muscle cells. Stimulation by either norepinephrine or histamine elevates the phosphorylase activity ratio within 5 s from a resting value of 0.37 +/- 0.03 to maximal values of 0.8-0.9. Phosphorylase activation by alpha-adrenergic agonists is sustained over 20-30 min of agonist exposure, whereas histamine exposure only transiently activates phosphorylase during the initial 5 min of stimulation. The initial activation of phosphorylase by either receptor is not attenuated by treated cells with Ca2+-deficient and [ethylenebis(oxyethylenenitrilo)]tetraacetic acid-supplemented buffer, whereas the response to sustained adrenergic stimulation depends largely, but not totally, upon extracellular Ca2+. The involvement of protein kinase C in agonist responses was tested by treating cells with phorbol 12-myristate 13-acetate. Phorbol 12-myristate 13-acetate inhibits receptor-mediated mobilization of intracellular Ca2+ (IC50 = 3.6 nM) yet activates phosphorylase independently of agonist. Phorbol 12-myristate 13-acetate has no effect on cellular 45Ca2+ fluxes in the absence of agonist. Thus, the two receptors coordinately regulate intracellular signaling through Ca2+- and protein kinase C-mediated pathways. alpha 1-Adrenergic receptors elicit sustained phosphorylase activation whereas H1-histaminergic receptors desensitize.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D011968 Receptors, Histamine Cell-surface proteins that bind histamine and trigger intracellular changes influencing the behavior of cells. Histamine receptors are widespread in the central nervous system and in peripheral tissues. Three types have been recognized and designated H1, H2, and H3. They differ in pharmacology, distribution, and mode of action. Histamine Binding Sites,Histamine Receptors,Histamine Receptor,Binding Sites, Histamine,Receptor, Histamine,Sites, Histamine Binding
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004075 Diglycerides Glycerides composed of two fatty acids esterified to the trihydric alcohol GLYCEROL. There are two possible forms that exist: 1,2-diacylglycerols and 1,3-diacylglycerols. Diacylglycerol,Diacylglycerols
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006005 Phosphorylases A class of glucosyltransferases that catalyzes the degradation of storage polysaccharides, such as glucose polymers, by phosphorolysis in animals (GLYCOGEN PHOSPHORYLASE) and in plants (STARCH PHOSPHORYLASE). Glucan Phosphorylase,Phosphorylase,alpha-Glucan Phosphorylases

Related Publications

S Toranji, and R D Brown
August 1989, Journal of cardiovascular pharmacology,
S Toranji, and R D Brown
August 1964, The Journal of biological chemistry,
S Toranji, and R D Brown
December 1970, The Journal of biological chemistry,
S Toranji, and R D Brown
January 1986, Japanese journal of pharmacology,
S Toranji, and R D Brown
February 1996, The American journal of physiology,
S Toranji, and R D Brown
April 1989, Biokhimiia (Moscow, Russia),
S Toranji, and R D Brown
March 1997, Biochimica et biophysica acta,
S Toranji, and R D Brown
January 2001, Biotechnology & genetic engineering reviews,
Copied contents to your clipboard!