Different membrane anchors of Fc gamma RIII (CD16) on K/NK-lymphocytes and neutrophils. Protein- vs lipid-anchor. 1989

E Ueda, and T Kinoshita, and J Nojima, and K Inoue, and T Kitani
Department of Clinical Research, Osaka University, Japan.

Fc gamma RIII (CD16), the type three receptor for the Fc portion of IgG, is expressed on neutrophils, killer (K)/NK lymphocytes and macrophages. K/NK lymphocyte Fc gamma RIII, which plays a role in antibody-dependent cellular cytotoxicity, is an efficient signal transducing molecule, whereas neutrophil Fc gamma RIII, which plays a role in immune-complex clearance, seems less efficient in signal transduction. Neutrophil Fc gamma RIII has been reported to be a glycan-phosphatidylinositol-anchored membrane protein. Our studies suggest that K/NK lymphocyte Fc gamma RIII is protein-anchored rather than glycan-phosphatidylinositol-anchored. That is, K/NK lymphocyte Fc gamma RIII was resistant to phosphatidylinositol-specific phospholipase C and surface expression of Fc gamma RIII was not affected on K/NK lymphocytes from patients with paroxysmal nocturnal hemoglobinuria, a disorder of hemopoietic stem cells resulting in deficient expression of glycan-phosphatidylinositol-anchored proteins. Different membrane anchoring mechanisms of the Fc gamma RIII may account for different consequences of the ligand binding to two cell types.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010727 Phosphoric Diester Hydrolases A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4. Phosphodiesterase,Phosphodiesterases,Hydrolases, Phosphoric Diester
D011961 Receptors, Fc Molecules found on the surface of some, but not all, B-lymphocytes, T-lymphocytes, and macrophages, which recognize and combine with the Fc (crystallizable) portion of immunoglobulin molecules. Fc Receptors,Fc Receptor,Receptor, Fc
D006457 Hemoglobinuria, Paroxysmal A condition characterized by the recurrence of HEMOGLOBINURIA caused by intravascular HEMOLYSIS. In cases occurring upon cold exposure (paroxysmal cold hemoglobinuria), usually after infections, there is a circulating antibody which is also a cold hemolysin. In cases occurring during or after sleep (paroxysmal nocturnal hemoglobinuria), the clonal hematopoietic stem cells exhibit a global deficiency of cell membrane proteins. Paroxysmal Cold Hemoglobinuria,Paroxysmal Nocturnal Hemoglobinuria,Marchiafava-Micheli Syndrome,Paroxysmal Hemoglobinuria,Paroxysmal Hemoglobinuria, Cold,Paroxysmal Hemoglobinuria, Nocturnal,Cold Paroxysmal Hemoglobinuria,Hemoglobinuria, Cold Paroxysmal,Hemoglobinuria, Nocturnal Paroxysmal,Hemoglobinuria, Paroxysmal Cold,Hemoglobinuria, Paroxysmal Nocturnal,Marchiafava Micheli Syndrome,Nocturnal Paroxysmal Hemoglobinuria,Syndrome, Marchiafava-Micheli
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000943 Antigens, Differentiation Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation. Differentiation Antigen,Differentiation Antigens,Differentiation Antigens, Hairy Cell Leukemia,Differentiation Marker,Differentiation Markers,Leu Antigen,Leu Antigens,Marker Antigen,Marker Antigens,Markers, Differentiation,Antigen, Differentiation,Antigen, Leu,Antigen, Marker,Antigens, Leu,Antigens, Marker,Marker, Differentiation

Related Publications

E Ueda, and T Kinoshita, and J Nojima, and K Inoue, and T Kitani
June 1992, European journal of immunology,
E Ueda, and T Kinoshita, and J Nojima, and K Inoue, and T Kitani
June 1990, Blood,
E Ueda, and T Kinoshita, and J Nojima, and K Inoue, and T Kitani
December 1989, Science (New York, N.Y.),
E Ueda, and T Kinoshita, and J Nojima, and K Inoue, and T Kitani
February 1991, European journal of immunology,
E Ueda, and T Kinoshita, and J Nojima, and K Inoue, and T Kitani
March 1992, Journal of immunology (Baltimore, Md. : 1950),
E Ueda, and T Kinoshita, and J Nojima, and K Inoue, and T Kitani
February 1990, Clinical immunology and immunopathology,
E Ueda, and T Kinoshita, and J Nojima, and K Inoue, and T Kitani
April 1991, European journal of immunology,
E Ueda, and T Kinoshita, and J Nojima, and K Inoue, and T Kitani
June 1995, American journal of clinical pathology,
E Ueda, and T Kinoshita, and J Nojima, and K Inoue, and T Kitani
October 2002, Immunogenetics,
E Ueda, and T Kinoshita, and J Nojima, and K Inoue, and T Kitani
March 1991, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!