Comparison of the effects of NaCl on the thermotropic behaviour of sn-1' and sn-3' stereoisomers of 1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol. 1989

I S Salonen, and K K Eklund, and J A Virtanen, and P K Kinnunen
Department of Membrane Physics, KSV Research Laboratories, University of Helsinki, Finland.

The phase behaviour of liposomes of 1,2-dimyristoyl-sn-glycero-3-phosphatidyl-sn-1'-glycerol (1'-DMPG) and the corresponding sn-3' stereoisomer (3'-DMPG) were studied by DSC as a function of NaCl concentration. The melting of the metastable gel phase to the liquid-crystalline phase was similar for both lipids. However, in the presence of salt and at 6 degrees C (T less than Tp) the gel phase of both stereoisomers of DMPG was shown to be metastable and a new phase nominated here as the highly crystalline phase was formed as the stable state. However, significant differences in the formation and melting of the highly crystalline phase were evident between the two polar headgroup stereoisomers. For 3'-DMPG in the presence of 300 mM NaCl the melting enthalpy of this phase is approx. 82 kJ/mol and the transition temperature about 11 degrees higher (at 33.6 degrees C) than for the gel to liquid-crystalline phase transition (25 kJ/mol at 23.0 degrees C). In the presence of 0.15-1.2 M NaCl at 6 to 10 degrees C the formation of the highly crystalline phase of 3'-DMPG is complete within 2 to 5 days, increasing [NaCl] facilitates the rate. For a 1:1 mixture of 1'- and 3'-DMPG the formation of the highly crystalline phase requires several weeks and melts at about 20 degrees higher than the gel phase (at approx. 40 degrees C). For 1'-DMPG partial conversion into the highly crystalline phase requires several months. For 3'-DMPG several intermediate phases appeared as endothermic peaks between the main phase transition temperature and the melting temperature of the highly crystalline phase. In contrast, for 1'-DMPG and the 1:1 mixture the subgel phase appears to be the only metastable intermediate phase. Different monovalent cations differ in their effect on the metastable behaviour.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008094 Lithium An element in the alkali metals family. It has the atomic symbol Li, atomic number 3, and atomic weight [6.938; 6.997]. Salts of lithium are used in treating BIPOLAR DISORDER. Lithium-7,Lithium 7
D010715 Phosphatidylglycerols A nitrogen-free class of lipids present in animal and particularly plant tissues and composed of one mole of glycerol and 1 or 2 moles of phosphatidic acid. Members of this group differ from one another in the nature of the fatty acids released on hydrolysis. Glycerol Phosphoglycerides,Monophosphatidylglycerols,Phosphatidylglycerol,Phosphatidyl Glycerol,Glycerol, Phosphatidyl,Phosphoglycerides, Glycerol
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation
D012965 Sodium Chloride A ubiquitous sodium salt that is commonly used to season food. Sodium Chloride, (22)Na,Sodium Chloride, (24)NaCl

Related Publications

I S Salonen, and K K Eklund, and J A Virtanen, and P K Kinnunen
January 2019, Chemistry and physics of lipids,
I S Salonen, and K K Eklund, and J A Virtanen, and P K Kinnunen
January 2015, Toxicology reports,
I S Salonen, and K K Eklund, and J A Virtanen, and P K Kinnunen
October 2017, International journal of pharmaceutics,
I S Salonen, and K K Eklund, and J A Virtanen, and P K Kinnunen
August 2020, Journal of chemical information and modeling,
I S Salonen, and K K Eklund, and J A Virtanen, and P K Kinnunen
June 2008, Langmuir : the ACS journal of surfaces and colloids,
I S Salonen, and K K Eklund, and J A Virtanen, and P K Kinnunen
February 2007, Langmuir : the ACS journal of surfaces and colloids,
I S Salonen, and K K Eklund, and J A Virtanen, and P K Kinnunen
August 2016, Scientific reports,
I S Salonen, and K K Eklund, and J A Virtanen, and P K Kinnunen
October 2021, RSC advances,
Copied contents to your clipboard!