Receptors for erythropoietin in mouse and human erythroid cells and placenta. 1989

S T Sawyer, and S B Krantz, and K Sawada
Department of Medicine, Vanderbilt University School of Medicine, Nashville TN 37232.

High and lower affinity receptors for erythropoietin (EP) were initially identified on a very pure population of EP-responsive erythroblasts obtained from the spleens of mice infected with anemia strain of Friend virus (FVA). The structure of the receptor for EP in these cells was determined to be proteins of 100 and 85 Kd by cross-linking 125I-EP. In this investigation, studies on the receptors for EP were extended to other mouse erythroid cells and human erythroid cells as well as to the placentas of mice and rats. Only lower affinity receptors for EP were detected on erythroblasts purified from the spleens of mice infected with the polycythemia strain of Friend virus and a murine erythroleukemia cell line, both of which are not responsive to EP in culture. Internalization of 125I-EP was observed in both groups of cells. The structure of the receptor determined by cross-linking 125I-EP was two equally labeled proteins of 100 Kd and 85 Kd molecular mass in all these mouse erythroid cells. The structure of the receptor was found to be very similar in human erythroid colony forming cells cultured from normal blood. These cells respond to EP with erythroid maturation and were previously shown to have high and lower affinity receptors. Placentas from mice and rats were found to have only lower affinity receptors for EP, and when placental membranes were cross-linked to 125I-EP, the same 100 Kd and 85 Kd bands were found as seen in mouse and human erythroid cells. The structure of the receptor was similar in cells that have high affinity receptors (FVA-infected and human erythroid colony-forming cells) and nonresponsive erythroid cells and placenta that have lower affinity receptors, but only the cells with the high affinity receptors respond to the addition of EP with erythroid maturation.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004915 Leukemia, Erythroblastic, Acute A myeloproliferative disorder characterized by neoplastic proliferation of erythroblastic and myeloblastic elements with atypical erythroblasts and myeloblasts in the peripheral blood. Di Guglielmo's Disease,Erythremic Myelosis,Erythroblastic Leukemia, Acute,Erythroleukemia,Leukemia, Myeloid, Acute, M6,Myeloid Leukemia, Acute, M6,Di Guglielmo Disease,Acute Erythroblastic Leukemia,Acute Erythroblastic Leukemias,Di Guglielmos Disease,Disease, Di Guglielmo,Disease, Di Guglielmo's,Erythremic Myeloses,Erythroblastic Leukemias, Acute,Erythroleukemias,Leukemia, Acute Erythroblastic,Leukemias, Acute Erythroblastic,Myeloses, Erythremic,Myelosis, Erythremic
D004920 Erythropoiesis The production of red blood cells (ERYTHROCYTES). In humans, erythrocytes are produced by the YOLK SAC in the first trimester; by the liver in the second trimester; by the BONE MARROW in the third trimester and after birth. In normal individuals, the erythrocyte count in the peripheral blood remains relatively constant implying a balance between the rate of erythrocyte production and rate of destruction. Erythropoieses
D004921 Erythropoietin Glycoprotein hormone, secreted chiefly by the KIDNEY in the adult and the LIVER in the FETUS, that acts on erythroid stem cells of the BONE MARROW to stimulate proliferation and differentiation.
D005622 Friend murine leukemia virus A strain of Murine leukemia virus (LEUKEMIA VIRUS, MURINE) producing leukemia of the reticulum-cell type with massive infiltration of liver, spleen, and bone marrow. It infects DBA/2 and Swiss mice. Friend Virus,Rowson-Parr Virus,Rowson Parr Virus,Virus, Friend,Virus, Rowson-Parr
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S T Sawyer, and S B Krantz, and K Sawada
May 2009, Experimental hematology,
S T Sawyer, and S B Krantz, and K Sawada
January 1987, Progress in clinical and biological research,
S T Sawyer, and S B Krantz, and K Sawada
October 1987, Biochemical and biophysical research communications,
S T Sawyer, and S B Krantz, and K Sawada
March 1999, Kidney international,
S T Sawyer, and S B Krantz, and K Sawada
May 1990, Archives of biochemistry and biophysics,
S T Sawyer, and S B Krantz, and K Sawada
June 1991, Blood,
S T Sawyer, and S B Krantz, and K Sawada
November 1991, Blood,
S T Sawyer, and S B Krantz, and K Sawada
April 1982, American journal of hematology,
Copied contents to your clipboard!