Thiobarbituric acid-reactive malondialdehyde formation during superoxide-dependent, iron-catalyzed lipid peroxidation: influence of peroxidation conditions. 1989

D R Janero, and B Burghardt
Department of Pharmacology and Chemotherapy, Hoffmann-La Roche Inc., Nutley, NJ 07110.

A systematic study of the influence of biological lipid peroxidation conditions on lipid hydroperoxide decomposition to thiobarbituric acid-reactive malondialdehyde is presented. A superoxide-dependent, iron-catalyzed peroxidation system was employed with xanthine oxidase plus hypoxanthine plus ferric iron-adenosine diphosphate complex as free radical generator. Purified cardiac membrane phospholipid (as liposomes) was the peroxidative target, and 15-hydroperoxy-eicosatetraenoic acid was used as a standard lipid hydroperoxide. Exposure of myocardial phospholipid to free radical generator at physiological pH (7.4) and temperature (37 degrees C) was found to support not only phospholipid peroxidation, but also rapid lipid hydroperoxide breakdown and consequent malondialdehyde formation during peroxidation. Under lipid peroxidation conditions, oxidative injury to the phospholipid polyunsaturated fatty acids required superoxide radical and ferric iron-adenosine diphosphate complex, whereas 37 degrees C temperature and trace iron were sufficient for lipid hydroperoxide decomposition to malondialdehyde. Harsh thiobarbituric acid-test conditions following peroxidation were not mandatory for either lipid hydroperoxide breakdown or thiobarbituric acid-reactive malondialdehyde formation. However, hydroperoxide decomposition that had begun in the peroxidation reaction could be completed during a subsequent thiobarbituric acid test in which no lipid autoxidation took place. Iron was more critical than heat in promoting the observed hydroperoxide decomposition to malondialdehyde during the lipid peroxidation reaction at 37 degrees C and pH 7.4. These data demonstrate that the radical generator, at physiological pH and temperature, serves a dual role as both initiator of membrane phospholipid peroxidation and promotor of lipid peroxide breakdown and thiobarbituric acid-reactive malondialdehyde formation.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008297 Male Males
D008314 Malonates Derivatives of malonic acid (the structural formula CH2(COOH)2), including its salts and esters.
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D R Janero, and B Burghardt
January 1998, Annales de biologie clinique,
D R Janero, and B Burghardt
May 1989, Archives of biochemistry and biophysics,
D R Janero, and B Burghardt
February 1981, Federation proceedings,
D R Janero, and B Burghardt
February 1989, Clinical chemistry,
D R Janero, and B Burghardt
January 1989, Patologicheskaia fiziologiia i eksperimental'naia terapiia,
D R Janero, and B Burghardt
October 2004, Revista brasileira de anestesiologia,
Copied contents to your clipboard!