Extranuclear estrogen-regulated destabilization of Xenopus laevis serum albumin mRNA. 1989

D R Schoenberg, and J E Moskaitis, and L H Smith, and R L Pastori
Department of Pharmacology Uniformed Services University of the Health Sciences Bethesda, Maryland 20814-4799.

The present study examined 1) whether the estrogen-regulated destabilization of albumin mRNA occurs in the nuclear or extranuclear fraction of the liver cell, and 2) whether the selective posttranscriptional regulation of albumin mRNA stability might result from covalent changes introduced in the processing or polyadenylation of the primary transcript. The disappearance of albumin mRNA after estrogen is restricted to the extranuclear fraction of the cell. Transient changes in steady state levels of the mature nuclear transcript were observed that mirrored the transient estrogen-induced changes previously reported for albumin gene transcription. When assayed 24 h after estrogen (when albumin RNA is virtually undetectable in the extranuclear fraction) the steady state levels of both the primary and mature albumin transcripts found in the nucleus were the same as observed in control animals. Estrogen had no effect on the splicing or selection of polyadenylation sites on the 3'-UTR as determined by high resolution gel analysis of the 3'-UTR and DNA sequencing of cDNA clones isolated from a liver library from an estrogen-treated male Xenopus. Most eukaryotic mRNAs have poly(A) tracts several hundred residues in length, and recent studies have demonstrated that a change in the stability of a number of mRNAs correlates directly with the degree of polyadenylation. Albumin contrasts sharply with this, first because it has an exceptionally short poly(A) tail of 17 residues, and second because the degree of polyadenylation is totally unrelated to its destabilization in response to estrogen. These findings indicate that a unique pathway is involved in the regulation of albumin RNA stability by estrogen in Xenopus.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004722 Endoribonucleases A family of enzymes that catalyze the endonucleolytic cleavage of RNA. It includes EC 3.1.26.-, EC 3.1.27.-, EC 3.1.30.-, and EC 3.1.31.-. Endoribonuclease
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

D R Schoenberg, and J E Moskaitis, and L H Smith, and R L Pastori
September 1984, Molecular and cellular biochemistry,
D R Schoenberg, and J E Moskaitis, and L H Smith, and R L Pastori
April 1986, Biochemical and biophysical research communications,
D R Schoenberg, and J E Moskaitis, and L H Smith, and R L Pastori
December 1982, The Journal of biological chemistry,
D R Schoenberg, and J E Moskaitis, and L H Smith, and R L Pastori
March 1995, The Journal of biological chemistry,
D R Schoenberg, and J E Moskaitis, and L H Smith, and R L Pastori
July 1982, The Journal of biological chemistry,
D R Schoenberg, and J E Moskaitis, and L H Smith, and R L Pastori
March 1988, The Journal of biological chemistry,
D R Schoenberg, and J E Moskaitis, and L H Smith, and R L Pastori
August 1981, European journal of biochemistry,
D R Schoenberg, and J E Moskaitis, and L H Smith, and R L Pastori
February 1997, Nucleic acids research,
D R Schoenberg, and J E Moskaitis, and L H Smith, and R L Pastori
October 1996, Nucleic acids research,
D R Schoenberg, and J E Moskaitis, and L H Smith, and R L Pastori
February 1985, Molecular and cellular endocrinology,
Copied contents to your clipboard!