Fish oil affects phosphoinositide turnover and thromboxane A metabolism in cultured vascular muscle cells. 1989

R Locher, and A Sachinidis, and A Steiner, and E Vogt, and W Vetter
Department of Internal Medicine, University Hospital, Zürich, Switzerland.

Fish oil has been reported as having beneficial effects on cardiovascular diseases. Elevated serum lipoproteins, prostaglandins and intracellular free calcium concentrations [( Ca2+]i) of the vasculature and thus the phosphoinositide (PI) turnover may be involved in the pathogenesis of these disorders. Therefore, the effect of fish oil on the potency of both low-density lipoprotein (LDL) and angiotensin II (AII) to stimulate the PI turnover in cultured rat vascular smooth muscle cells (VSMC) has been studied. Furthermore, a possible link between PI turnover activity and thromboxane A2 (TXA2) metabolism in these cells has been investigated. In VSMC cultured for up to 7 weeks with either fish oil or n-3 eicosapentaenoic acid (EPA) a decrease to 5-48% of the LDL-induced inositol trisphosphate (IP3) formation (= 100%) was found. A similar range of decreased IP3 synthesis was observed, when AII was used instead of LDL. Both LDL- and AII-stimulated TXA2 synthesis was suppressed concomitantly within the range 34-60%. Blockade of VSMC TXA2 biosynthesis with either indomethacin or TXA2 synthetase blocker (SQ-80338) inhibited LDL-induced formation of IP3 in a dose-dependent manner. Similar results were obtained, when TXA2 receptor coupling antagonists (SQ-27427 or BM-13177) were used. However, blockers of TXA2 synthesis and of TXA2 receptor binding failed to affect AII-induced formation of IP3.

UI MeSH Term Description Entries
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005395 Fish Oils Oils high in unsaturated fats extracted from the bodies of fish or fish parts, especially the LIVER. Those from the liver are usually high in VITAMIN A. The oils are used as DIETARY SUPPLEMENTS. They are also used in soaps and detergents and as protective coatings. Fish Liver Oils,Fish Oil,Liver Oils, Fish,Oil, Fish,Oils, Fish,Oils, Fish Liver
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013928 Thromboxane A2 An unstable intermediate between the prostaglandin endoperoxides and thromboxane B2. The compound has a bicyclic oxaneoxetane structure. It is a potent inducer of platelet aggregation and causes vasoconstriction. It is the principal component of rabbit aorta contracting substance (RCS). Rabbit Aorta Contracting Substance,A2, Thromboxane

Related Publications

R Locher, and A Sachinidis, and A Steiner, and E Vogt, and W Vetter
December 1988, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
R Locher, and A Sachinidis, and A Steiner, and E Vogt, and W Vetter
March 1992, Arteriosclerosis and thrombosis : a journal of vascular biology,
R Locher, and A Sachinidis, and A Steiner, and E Vogt, and W Vetter
January 1994, British journal of pharmacology,
R Locher, and A Sachinidis, and A Steiner, and E Vogt, and W Vetter
December 1987, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
R Locher, and A Sachinidis, and A Steiner, and E Vogt, and W Vetter
October 1994, Journal of hypertension,
R Locher, and A Sachinidis, and A Steiner, and E Vogt, and W Vetter
April 1987, Biochemical and biophysical research communications,
R Locher, and A Sachinidis, and A Steiner, and E Vogt, and W Vetter
May 1988, Biochemical and biophysical research communications,
R Locher, and A Sachinidis, and A Steiner, and E Vogt, and W Vetter
June 1990, General physiology and biophysics,
R Locher, and A Sachinidis, and A Steiner, and E Vogt, and W Vetter
July 1997, Arteriosclerosis, thrombosis, and vascular biology,
R Locher, and A Sachinidis, and A Steiner, and E Vogt, and W Vetter
February 1988, Biochemical and biophysical research communications,
Copied contents to your clipboard!