Renal nerve contribution to NaCl-exacerbated hypertension in spontaneously hypertensive rats. 1989

W Sripairojthikoon, and S Oparil, and J M Wyss
Department of Cell Biology and Anatomy, University of Alabama, Birmingham 35294.

Previous studies demonstrate that bilateral renal denervation enhances urinary sodium excretion and delays the onset of hypertension in young (7-week-old) spontaneously hypertensive rats (SHR) maintained on ordinary laboratory chow. We interpret these data as suggesting that increased renal nerve activity in this model contributes to hypertension by causing excess sodium retention. More recent studies show that dietary NaCl supplementation increases blood pressure and peripheral sympathetic nervous system activity in NaCl-sensitive SHR (SHR-S). The present study tests the hypothesis that the renal nerves contribute to the rise in arterial pressure caused by dietary NaCl supplementation in this model. SHR-S were fed a high (8%) or basal (1%) NaCl diet beginning at age 7 weeks. Bilateral renal denervation was carried out 2 weeks after the initiation of the diets, at which time systolic blood pressure was significantly higher in the high (compared with the basal) NaCl group. Systolic blood pressure was reduced slightly less in denervated SHR-S on the high (compared with basal) NaCl diet during the following 5 weeks. Renal denervation performed 1 week before initiation of the diets attenuated the subsequent development of hypertension equally in both groups. Both renal denervation and the high NaCl diet increased alpha 2-adrenergic receptor numbers in the kidney; renal denervation caused an approximately equal increase in alpha 2-adrenergic receptor binding in SHR-S on high and basal NaCl diets. The high NaCl diet increased plasma noradrenaline concentration, and renal denervation lowered mean arterial pressure but did not decrease circulating catecholamines in either diet group.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011918 Rats, Inbred SHR A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke. Rats, Spontaneously Hypertensive,Rats, SHR,Inbred SHR Rat,Inbred SHR Rats,Rat, Inbred SHR,Rat, SHR,Rat, Spontaneously Hypertensive,SHR Rat,SHR Rat, Inbred,SHR Rats,SHR Rats, Inbred,Spontaneously Hypertensive Rat,Spontaneously Hypertensive Rats
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D003714 Denervation The resection or removal of the nerve to an organ or part. Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D012965 Sodium Chloride A ubiquitous sodium salt that is commonly used to season food. Sodium Chloride, (22)Na,Sodium Chloride, (24)NaCl

Related Publications

W Sripairojthikoon, and S Oparil, and J M Wyss
April 1997, Clinical and experimental hypertension (New York, N.Y. : 1993),
W Sripairojthikoon, and S Oparil, and J M Wyss
July 1991, The American journal of clinical nutrition,
W Sripairojthikoon, and S Oparil, and J M Wyss
December 2001, American journal of physiology. Regulatory, integrative and comparative physiology,
W Sripairojthikoon, and S Oparil, and J M Wyss
February 1990, Hypertension (Dallas, Tex. : 1979),
W Sripairojthikoon, and S Oparil, and J M Wyss
January 1992, Clinical and experimental hypertension. Part A, Theory and practice,
W Sripairojthikoon, and S Oparil, and J M Wyss
November 2003, Canadian journal of physiology and pharmacology,
W Sripairojthikoon, and S Oparil, and J M Wyss
March 2013, Journal of cardiovascular pharmacology and therapeutics,
W Sripairojthikoon, and S Oparil, and J M Wyss
February 2003, Hypertension (Dallas, Tex. : 1979),
W Sripairojthikoon, and S Oparil, and J M Wyss
December 1996, Journal of the autonomic nervous system,
W Sripairojthikoon, and S Oparil, and J M Wyss
February 1996, Journal of hypertension,
Copied contents to your clipboard!