The identification and characterization of collagen receptors involved in HeLa cell-substratum adhesion. 1989

M L Lu, and D A Beacham, and B S Jacobson
Department of Biochemistry, University of Massachusetts, Amherst 01003.

Four proteins of molecular mass 102, 87, 45, and 38 kDa were isolated from plasma membrane preparations by affinity chromatography. The 102-, 87-, and 38-kDa proteins were shown to be collagen receptors involved in the adhesion of HeLa cells to a gelatin substratum. All four proteins were eluted by high salt from affinity columns made of either types I or IV collagen or type I gelatin. Generally, a total of six major proteins were found in the high salt eluates, although the relative amounts of each varied among experiments. Immunoprecipitation, immunoblotting, and limited peptide mapping indicated that the 102-kDa protein was most sensitive to proteolysis leading to the formation of proteins of molecular mass 58 and 54 kDa. Even in the presence of a mixture of protease inhibitors the 58-kDa fragment was usually the more abundant species. Lectin binding indicated that the 102-, 87-, and 38-kDa proteins contain carbohydrate. Phase-partitioning with Triton X-114 and the need to solubilize the proteins in Triton X-100 indicated that the 102-, 87-, 45-, and 38-kDa proteins have a hydrophobic domain. The 87-kDa protein partitioned exclusively with the detergent-rich phase, suggesting that it is the most hydrophobic. Cell surface labeling with 125I indicated that the four proteins have an extracellular domain. Four criteria were used to determine which of the four proteins are collagen receptors mediating cell-substrate adhesion: 1) during HeLa cell adhesion, proteins with Mr values similar to all four proteins or their peptide fragments were cross-linked to a gelatin substratum derivatized with a photoactivatable probe; 2) a pentapeptide containing the Arg-Gly-Asp cell recognition sequence eluted the same four proteins as those found by high salt elution of collagen affinity columns; 3) monospecific antibodies to the 102-, 87-, and 38-kDa proteins, but not the 45-kDa protein, inhibited the spreading of HeLa cells on a gelatin substratum; 4) monospecific antibodies to the 102-, 87-, and 38-kDa proteins, but not the 45-kDa protein, bound to culture dishes substituted for gelatin in mediating the spreading of HeLa cells. Taken together, the data suggest that the 102-, 87-, and 38-kDa proteins are collagen receptors involved in HeLa cell adhesion. Although the 45-kDa protein has two of the characteristics of a collagen receptor defined here, it does not fit the criteria for one involved in cell-substratum adhesion.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein

Related Publications

M L Lu, and D A Beacham, and B S Jacobson
June 1989, The Journal of clinical investigation,
M L Lu, and D A Beacham, and B S Jacobson
September 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M L Lu, and D A Beacham, and B S Jacobson
August 1986, FEBS letters,
M L Lu, and D A Beacham, and B S Jacobson
July 1990, Experimental cell research,
M L Lu, and D A Beacham, and B S Jacobson
October 1981, Proceedings of the National Academy of Sciences of the United States of America,
M L Lu, and D A Beacham, and B S Jacobson
November 1992, Journal of orthopaedic research : official publication of the Orthopaedic Research Society,
M L Lu, and D A Beacham, and B S Jacobson
November 1981, Experimental cell research,
M L Lu, and D A Beacham, and B S Jacobson
May 1985, Experimental cell research,
M L Lu, and D A Beacham, and B S Jacobson
January 1992, EXS,
M L Lu, and D A Beacham, and B S Jacobson
January 2002, Journal of proteome research,
Copied contents to your clipboard!