Characterization of free radicals produced during oxidation of etoposide (VP-16) and its catechol and quinone derivatives. An ESR Study. 1989

B Kalyanaraman, and J Nemec, and B K Sinha
National Biomedical ESR Center, Medical College of Wisconsin, Milwaukee 53226.

Spectroscopic evidence for the radical-mediated metabolism of VP-16, VP-16 catechol, and VP-16 quinone during enzymatic oxidation and autoxidation has been obtained. Autoxidation of the catechol yields the primary semiquinone together with the primary molecular product VP-16 quinone, which subsequently undergoes hydrolytic oxidation to form secondary quinones and semiquinones. Both primary and secondary phenoxyl radicals were detected during peroxidatic oxidation of VP-16. Neither the primary nor the secondary radicals react with DNA at a detectable rate. Evidence for the production of hydroxyl radical during iron-catalyzed oxidation of VP-16 catechol was obtained. These free radical reactions may have implications for the mechanism of antitumor action of VP-16.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010636 Phenols Benzene derivatives that include one or more hydroxyl groups attached to the ring structure.
D011809 Quinones Hydrocarbon rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups.
D002396 Catechols A group of 1,2-benzenediols that contain the general formula R-C6H5O2. Pyrocatechols,o-Dihydroxybenzenes,ortho-Dihydroxybenzenes,o Dihydroxybenzenes,ortho Dihydroxybenzenes
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005047 Etoposide A semisynthetic derivative of PODOPHYLLOTOXIN that exhibits antitumor activity. Etoposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent entry into the mitotic phase of cell division, and lead to cell death. Etoposide acts primarily in the G2 and S phases of the cell cycle. Demethyl Epipodophyllotoxin Ethylidine Glucoside,Celltop,Eposide,Eposin,Eto-GRY,Etomedac,Etopos,Etoposide Pierre Fabre,Etoposide Teva,Etoposide, (5S)-Isomer,Etoposide, (5a alpha)-Isomer,Etoposide, (5a alpha,9 alpha)-Isomer,Etoposide, alpha-D-Glucopyranosyl Isomer,Etoposido Ferrer Farma,Exitop,Lastet,NSC-141540,Onkoposid,Riboposid,Toposar,VP 16-213,VP-16,Vepesid,Vépéside-Sandoz,Eto GRY,Etoposide, alpha D Glucopyranosyl Isomer,NSC 141540,NSC141540,Teva, Etoposide,VP 16,VP 16 213,VP 16213,VP16,Vépéside Sandoz,alpha-D-Glucopyranosyl Isomer Etoposide

Related Publications

B Kalyanaraman, and J Nemec, and B K Sinha
November 1995, Biochimica et biophysica acta,
B Kalyanaraman, and J Nemec, and B K Sinha
January 1988, Basic life sciences,
B Kalyanaraman, and J Nemec, and B K Sinha
November 1997, Archives of biochemistry and biophysics,
B Kalyanaraman, and J Nemec, and B K Sinha
January 1988, Free radical research communications,
B Kalyanaraman, and J Nemec, and B K Sinha
March 1985, Seminars in oncology,
B Kalyanaraman, and J Nemec, and B K Sinha
September 1986, Gan to kagaku ryoho. Cancer & chemotherapy,
B Kalyanaraman, and J Nemec, and B K Sinha
January 1991, Advances in experimental medicine and biology,
B Kalyanaraman, and J Nemec, and B K Sinha
January 1991, Acta pharmaceutica Nordica,
Copied contents to your clipboard!