Inhibition of platelet-von Willebrand factor binding to platelets by adhesion site peptides. 1989

R I Parker, and H R Gralnick
Clinical Pathology Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892.

Synthetic peptides containing the adhesion site recognition sequences present on the A alpha and gamma chains of fibrinogen were studied for their effect on the binding of endogenous platelet-von Willebrand factor (vWF) and exogenous plasma-vWf to thrombin-stimulated platelets. In agreement with previously reported data, the tetrapeptide consisting of the RGDS sequence was a more potent inhibitor of plasma-vWf binding to platelets than was the pentadecapeptide of the carboxy terminus of the fibrinogen gamma-chain (IC50 10.6 mumol/L for the RGDS tetrapeptide v 44.9 mumol/L for the gamma-chain pentadecapeptide). No apparent synergy in the inhibition of plasma-vWf binding was noted when the RGDS and gamma-chain peptides were used together (IC50 15.2 mumol/L). In contrast, the gamma-chain peptide was significantly more inhibitory than was the RGDS tetrapeptide on the binding of platelet-vWf to platelets (IC50 1.4 mumol/L for the gamma-chain pentadecapeptide v 4.5 mumol/L for the RGDS tetrapeptide, P less than .05), and there was significant synergy in the inhibition of platelet-vWf binding noted when the gamma-chain and RGDS peptides were used together (IC50 0.04 mumol/L). These results indicate that the binding of platelet-vWf to its receptor on the platelet glycoprotein IIb/IIIa complex involves both the RGDS and gamma-chain recognition sites. In contrast to the results with plasma-vWf binding, the gamma-chain recognition site appears to be more important than the RGDS recognition site in platelet-vWf binding to platelets.

UI MeSH Term Description Entries
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D010973 Platelet Adhesiveness The process whereby PLATELETS adhere to something other than platelets, e.g., COLLAGEN; BASEMENT MEMBRANE; MICROFIBRILS; or other "foreign" surfaces. Adhesiveness, Platelet,Adhesivenesses, Platelet,Platelet Adhesivenesses
D010975 Platelet Aggregation Inhibitors Drugs or agents which antagonize or impair any mechanism leading to blood platelet aggregation, whether during the phases of activation and shape change or following the dense-granule release reaction and stimulation of the prostaglandin-thromboxane system. Antiaggregants, Platelet,Antiplatelet Agent,Antiplatelet Agents,Antiplatelet Drug,Blood Platelet Aggregation Inhibitor,Blood Platelet Antagonist,Blood Platelet Antiaggregant,PAR-1 Antagonists,Platelet Aggregation Inhibitor,Platelet Antagonist,Platelet Antagonists,Platelet Antiaggregant,Platelet Antiaggregants,Platelet Inhibitor,Protease-Activated Receptor-1 Antagonists,Antiplatelet Drugs,Blood Platelet Aggregation Inhibitors,Blood Platelet Antagonists,Blood Platelet Antiaggregants,Platelet Inhibitors,Agent, Antiplatelet,Aggregation Inhibitor, Platelet,Antagonist, Blood Platelet,Antagonist, Platelet,Antiaggregant, Blood Platelet,Antiaggregant, Platelet,Drug, Antiplatelet,Inhibitor, Platelet,Inhibitor, Platelet Aggregation,PAR 1 Antagonists,Platelet Antagonist, Blood,Platelet Antiaggregant, Blood,Protease Activated Receptor 1 Antagonists
D010980 Platelet Membrane Glycoproteins Surface glycoproteins on platelets which have a key role in hemostasis and thrombosis such as platelet adhesion and aggregation. Many of these are receptors. PM-GP,Platelet Glycoprotein,Platelet Membrane Glycoprotein,PM-GPs,Platelet Glycoproteins,Glycoprotein, Platelet,Glycoprotein, Platelet Membrane,Glycoproteins, Platelet,Glycoproteins, Platelet Membrane,Membrane Glycoprotein, Platelet,Membrane Glycoproteins, Platelet,PM GP
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D013917 Thrombin An enzyme formed from PROTHROMBIN that converts FIBRINOGEN to FIBRIN. Thrombase,Thrombin JMI,Thrombin-JMI,Thrombinar,Thrombostat,alpha-Thrombin,beta,gamma-Thrombin,beta-Thrombin,gamma-Thrombin,JMI, Thrombin
D014841 von Willebrand Factor A high-molecular-weight plasma protein, produced by endothelial cells and megakaryocytes, that is part of the factor VIII/von Willebrand factor complex. The von Willebrand factor has receptors for collagen, platelets, and ristocetin activity as well as the immunologically distinct antigenic determinants. It functions in adhesion of platelets to collagen and hemostatic plug formation. The prolonged bleeding time in VON WILLEBRAND DISEASES is due to the deficiency of this factor. Factor VIII-Related Antigen,Factor VIIIR-Ag,Factor VIIIR-RCo,Plasma Factor VIII Complex,Ristocetin Cofactor,Ristocetin-Willebrand Factor,von Willebrand Protein,Factor VIII Related Antigen,Factor VIIIR Ag,Factor VIIIR RCo,Ristocetin Willebrand Factor

Related Publications

R I Parker, and H R Gralnick
June 1997, Thrombosis research,
R I Parker, and H R Gralnick
November 1984, Thrombosis research,
R I Parker, and H R Gralnick
December 1990, Thrombosis and haemostasis,
R I Parker, and H R Gralnick
February 2012, Journal of biomedical materials research. Part A,
R I Parker, and H R Gralnick
July 1983, The Journal of clinical investigation,
R I Parker, and H R Gralnick
June 1984, Thrombosis research,
R I Parker, and H R Gralnick
July 1986, Thrombosis research,
Copied contents to your clipboard!