Three types of voltage-dependent calcium current in cultured rat hippocampal neurons. 1989

S Ozawa, and K Tsuzuki, and M Iino, and A Ogura, and Y Kudo
Department of Physiology, School of Medicine, Gunma University, Japan.

Voltage-dependent calcium (Ca2+) currents in cultured rat hippocampal neurons were studied with the whole-cell recording mode of the patch-clamp technique. On the basis of the voltage-dependence of activation, kinetics of inactivation and pharmacology, 3 types of Ca2+ currents were distinguished. The low-threshold Ca2+ current (Il) was activated at -60 mV, and completely inactivated during a 100-ms depolarization to -40 mV (time constant: tau = 16 +/- 1 ms). The high-threshold currents (Ih), which were activated at -20 mV, could be separated into two types. The high-threshold, fast inactivating current (Ih,f) decayed quickly during a maintained depolarization (tau = 33 +/- 3 ms at 0 mV), whereas the high-threshold, slowly inactivating current (Ih,s) decayed with a much slower time constant (tau = 505 +/- 42 ms at 0 mV). The inactivations of Ih,f and Ih,s exhibited different time- and voltage-dependencies. Nickel ions (Ni2+, 25 microM) markedly suppressed Il, but little affected Ih. Cadmium ions (Cd2+, 10 microM) almost completely suppressed Ih, but left a small amount of Il. Lanthanum ions (La3+, 10 microM) almost completely suppressed both Il and Ih. Ih,s was sensitive to block by the dihydropyridine antagonist nicardipine (10 microM).

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

S Ozawa, and K Tsuzuki, and M Iino, and A Ogura, and Y Kudo
September 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S Ozawa, and K Tsuzuki, and M Iino, and A Ogura, and Y Kudo
September 1989, European journal of pharmacology,
S Ozawa, and K Tsuzuki, and M Iino, and A Ogura, and Y Kudo
August 1986, Journal of neurophysiology,
S Ozawa, and K Tsuzuki, and M Iino, and A Ogura, and Y Kudo
August 2003, Acta pharmacologica Sinica,
S Ozawa, and K Tsuzuki, and M Iino, and A Ogura, and Y Kudo
November 1994, Pflugers Archiv : European journal of physiology,
S Ozawa, and K Tsuzuki, and M Iino, and A Ogura, and Y Kudo
March 1989, Journal of neurophysiology,
S Ozawa, and K Tsuzuki, and M Iino, and A Ogura, and Y Kudo
April 1990, Neuroscience letters,
S Ozawa, and K Tsuzuki, and M Iino, and A Ogura, and Y Kudo
March 1995, Nagoya journal of medical science,
S Ozawa, and K Tsuzuki, and M Iino, and A Ogura, and Y Kudo
May 1999, Nagoya journal of medical science,
S Ozawa, and K Tsuzuki, and M Iino, and A Ogura, and Y Kudo
December 1994, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!