[New relations for steady-state enzyme kinetics and their application to rapid equilibrium assumption]. 2013

P V Vrzheshch

With the use of a graph theory new relations for steady-state enzyme kinetics are derived and strictly proved for the arbitrary mechanism of an enzyme-catalysed reaction containing a reversible segment. Using these relations, a general principle for rapid equilibrium assumption is formulated and proved: the reversible bound segment can be considered as an equilibrium segment only when the values of the base trees that are not proper to this segment can be neglected (within a prescribed accuracy) in relation to the values of the base trees that belong to this segment. In contrast with the foreign base trees the base trees that are proper to the segment have the following properties: the tree that is directed to the base within this segment does not contain the edges leaving this segment; and the tree that is directed to the base outside the segment contains only one edge leaving this segment. Equilibrium variations are assessed for steady-state intermediates concentrations of the equilibrium segment, numerical expressions are obtained for the accuracy of determination of the intermediates concentrations as well as for the accuracy of determination of the rate of enzyme-catalysed reaction in case of using rapid equilibrium assumption.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D004798 Enzymes Biological molecules that possess catalytic activity. They may occur naturally or be synthetically created. Enzymes are usually proteins, however CATALYTIC RNA and CATALYTIC DNA molecules have also been identified. Biocatalyst,Enzyme,Biocatalysts

Related Publications

P V Vrzheshch
November 1972, Journal of theoretical biology,
P V Vrzheshch
January 1988, Bulletin of mathematical biology,
P V Vrzheshch
January 2014, Methods in enzymology,
P V Vrzheshch
January 1985, Computer applications in the biosciences : CABIOS,
P V Vrzheshch
December 2010, The journal of physical chemistry. B,
P V Vrzheshch
August 1981, Journal of theoretical biology,
Copied contents to your clipboard!