The combined action of two intercellular signaling pathways specifies three cell fates during vulval induction in C. elegans. 1989

P W Sternberg, and H R Horvitz
Howard Hughes Medical Institute Division of Biology, California Institute of Technology, Pasadena 91125.

Each of the six C. elegans vulval precursor cells (VPCs) has three potential fates (1 degree, 2 degrees, or 3 degrees). The fate of each VPC depends on two types of signals: a graded inductive signal that acts at a distance and a short-range lateral signal among the VPCs. We describe interactions among mutations that cause different misspecifications of VPC fates. Particular combinations of mutations cause all six VPCs to have a single fate independent of their positions. Our results suggest that specification of the three VPC fates is accomplished by two binary decisions, each effected by one of the two signaling pathways. The gene lin-12 acts in the lateral signaling pathway and specifies 2 degrees. The "vulvaless" and "multivulva" genes act in the inductive signaling pathway and specify 1 degree independently of lin-12 and 2 degrees via lin-12. We describe a model for the regulatory circuitry underlying VPC determination that includes a role for lin-12 in both autocrine and paracrine VPC signaling.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002107 Caenorhabditis A genus of small free-living nematodes. Two species, CAENORHABDITIS ELEGANS and C. briggsae are much used in studies of genetics, development, aging, muscle chemistry, and neuroanatomy. Caenorhabditides
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D004627 Embryonic Induction The complex processes of initiating CELL DIFFERENTIATION in the embryo. The precise regulation by cell interactions leads to diversity of cell types and specific pattern of organization (EMBRYOGENESIS). Embryonic Inductions,Induction, Embryonic,Inductions, Embryonic
D005260 Female Females
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014844 Vulva The external genitalia of the female. It includes the CLITORIS, the labia, the vestibule, and its glands. Vulvas

Related Publications

P W Sternberg, and H R Horvitz
January 1992, Cold Spring Harbor symposia on quantitative biology,
P W Sternberg, and H R Horvitz
June 2003, Development (Cambridge, England),
P W Sternberg, and H R Horvitz
June 1996, BioEssays : news and reviews in molecular, cellular and developmental biology,
P W Sternberg, and H R Horvitz
January 2001, Current topics in developmental biology,
P W Sternberg, and H R Horvitz
January 2011, Developmental cell,
P W Sternberg, and H R Horvitz
January 2012, Molecular systems biology,
Copied contents to your clipboard!