Stimulation of arachidonic acid metabolism in silica-exposed alveolar macrophages. 1989

M D Englen, and S M Taylor, and W W Laegreid, and H D Liggitt, and R M Silflow, and R G Breeze, and R W Leid
Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman 99164-7040.

The molecular events involved in both the initiation and development of silicosis are at present poorly defined, although mediators released from macrophages exposed to silica particles are believed to play a role. We have investigated the in vitro production of arachidonic acid (AA) metabolites in adherent bovine alveolar macrophages (BAM) incubated with crystalline silica. BAM were prelabeled with 3H-AA and incubated with 0.5-5.0 mg silica. Lipid metabolites released into the culture medium were analyzed by high-performance liquid chromatography. Simultaneously, lactate dehydrogenase (LDH) was assayed to provide an indication of cell injury. No 5-lipoxygenase metabolites were detected at the lowest silica dose tested (0.5 mg/well), but 5-hydroxyeicosatetraenoic acid (5-HETE) was the major AA metabolite detected between 1.5 and 5.0 mg of silica. A fivefold increase in the production of leukotriene B4 (LTB4) and its two nonenzymatic diastereomers (Isomers I and II) was observed as the silica concentration was increased from 1.0 to 5.0 mg. In contrast, the release of cyclooxygenase products declined with increasing concentrations of silica. LDH release increased in a linear, dose-dependent fashion in the range of silica doses used. The kinetics of eicosanoid release was investigated over a 3-h interval and LDH release was assayed for each time point. Within 15 min following silica addition, a shift to the production of 5-lipoxygenase metabolites was observed, accompanied by a reduction in cyclooxygenase products. This rapid alteration in AA metabolism preceded cell injury as measured by LDH release. These results demonstrate that silica is a powerful stimulator of arachidonic acid metabolism in BAM. Moreover, silica selectively stimulates the 5-lipoxygenase pathway as the dose of silica increases. Our results suggest that dysfunction in arachidonate metabolism could contribute to the pathogenesis of silicosis.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004537 Eicosanoic Acids 20-carbon saturated monocarboxylic acids. Arachidic Acids,Acids, Arachidic,Acids, Eicosanoic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001094 Arachidonate 5-Lipoxygenase An enzyme that catalyzes the oxidation of arachidonic acid to yield 5-hydroperoxyarachidonate (5-HPETE) which is rapidly converted by a peroxidase to 5-hydroxy-6,8,11,14-eicosatetraenoate (5-HETE). The 5-hydroperoxides are preferentially formed in leukocytes. 5-Lipoxygenase,Arachidonic Acid 5-Lipoxygenase,LTA4 Synthase,Leukotriene A Synthase,Leukotriene A4 Synthase,Leukotriene A4 Synthetase,5 Lipoxygenase,5-Lipoxygenase, Arachidonate,5-Lipoxygenase, Arachidonic Acid,Arachidonate 5 Lipoxygenase,Arachidonic Acid 5 Lipoxygenase,Synthase, LTA4,Synthase, Leukotriene A,Synthase, Leukotriene A4,Synthetase, Leukotriene A4
D001095 Arachidonic Acids Eicosatetraenoic Acids,Acids, Arachidonic,Acids, Eicosatetraenoic
D012822 Silicon Dioxide Transparent, tasteless crystals found in nature as agate, amethyst, chalcedony, cristobalite, flint, sand, QUARTZ, and tridymite. The compound is insoluble in water or acids except hydrofluoric acid. Silica,Aerosil,Aerosil 380,Cristobalite,Quso G-32,Quso G32,Tridymite,380, Aerosil,Dioxide, Silicon,G32, Quso,Quso G 32
D012829 Silicosis A form of pneumoconiosis resulting from inhalation of dust containing crystalline form of SILICON DIOXIDE, usually in the form of quartz. Amorphous silica is relatively nontoxic. Silicoses

Related Publications

M D Englen, and S M Taylor, and W W Laegreid, and H D Liggitt, and R M Silflow, and R G Breeze, and R W Leid
July 1999, Prostaglandins, leukotrienes, and essential fatty acids,
M D Englen, and S M Taylor, and W W Laegreid, and H D Liggitt, and R M Silflow, and R G Breeze, and R W Leid
September 1977, Inflammation,
M D Englen, and S M Taylor, and W W Laegreid, and H D Liggitt, and R M Silflow, and R G Breeze, and R W Leid
November 1990, American journal of veterinary research,
M D Englen, and S M Taylor, and W W Laegreid, and H D Liggitt, and R M Silflow, and R G Breeze, and R W Leid
April 1995, Prostaglandins, leukotrienes, and essential fatty acids,
M D Englen, and S M Taylor, and W W Laegreid, and H D Liggitt, and R M Silflow, and R G Breeze, and R W Leid
January 1987, Clinical immunology and immunopathology,
M D Englen, and S M Taylor, and W W Laegreid, and H D Liggitt, and R M Silflow, and R G Breeze, and R W Leid
October 1989, Laboratory investigation; a journal of technical methods and pathology,
M D Englen, and S M Taylor, and W W Laegreid, and H D Liggitt, and R M Silflow, and R G Breeze, and R W Leid
January 1991, Advances in prostaglandin, thromboxane, and leukotriene research,
M D Englen, and S M Taylor, and W W Laegreid, and H D Liggitt, and R M Silflow, and R G Breeze, and R W Leid
October 1981, The American review of respiratory disease,
M D Englen, and S M Taylor, and W W Laegreid, and H D Liggitt, and R M Silflow, and R G Breeze, and R W Leid
September 1989, Biochemistry international,
M D Englen, and S M Taylor, and W W Laegreid, and H D Liggitt, and R M Silflow, and R G Breeze, and R W Leid
October 1995, American journal of respiratory and critical care medicine,
Copied contents to your clipboard!