Modulation of mu-mediated antinociception by delta agonists in the mouse: selective potentiation of morphine and normorphine by [D-Pen2,D-Pen5]enkephalin. 1989

J S Heyman, and J L Vaught, and H I Mosberg, and R C Haaseth, and F Porreca
Department of Pharmacology, University of Arizona Health Sciences Center, Tucson 85724.

The effect of the delta-selective agonist [D-Pen2,D-Pen5]enkephalin (DPDPE) on the antinociception produced by intracerebroventricular (i.c.v.) administration of the mu agonists morphine, [D-Ala2,NMePhe4,Gly-ol5]enkephalin (DAGO), [NMePhe3,D-Pro4]morphiceptin (PLO17), beta-endorphin, phenazocine, etorphine and sufentanil was studied in mice. Only the antinociceptive effects of morphine and normorphine were modulated by i.c.v. coadministration of a dose of DPDPE which did not produce any significant antinociception alone. Both the morphine and normorphine dose-response lines were displaced to the left in the presence of DPDPE. The delta-selective antagonist ICI174,864 (N,N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH) (where Aib is alpha-aminoisobutyric acid) blocked the modulation of morphine antinociception by DPDPE. ICI 174,864 alone failed to produce either a significant increase or decrease of morphine, phenazocine, etorphine or beta-endorphin antinociception. The results of the present study provide support for the hypothesis that the enkephalins may function to modulate antinociception produced at the mu receptor; such modulation may come about via the existence of an opioid mu-delta receptor complex. The mu receptors existing in such a complex may be selectively activated by morphine and normorphine, but not the other mu agonists studied here. Thus, the enkephalins may function both to directly initiate, as well as to modulate, some forms of supraspinal mu receptor-mediated antinociception.

UI MeSH Term Description Entries
D007276 Injections, Intraventricular Injections into the cerebral ventricles. Intraventricular Injections,Injection, Intraventricular,Intraventricular Injection
D008297 Male Males
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009022 Morphine Derivatives Analogs or derivatives of morphine. Morphines
D009294 Narcotics Agents that induce NARCOSIS. Narcotics include agents that cause somnolence or induced sleep (STUPOR); natural or synthetic derivatives of OPIUM or MORPHINE or any substance that has such effects. They are potent inducers of ANALGESIA and OPIOID-RELATED DISORDERS. Analgesics, Narcotic,Narcotic Analgesics,Narcotic,Narcotic Effect,Narcotic Effects,Effect, Narcotic,Effects, Narcotic
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D004745 Enkephalins One of the three major families of endogenous opioid peptides. The enkephalins are pentapeptides that are widespread in the central and peripheral nervous systems and in the adrenal medulla. Enkephalin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J S Heyman, and J L Vaught, and H I Mosberg, and R C Haaseth, and F Porreca
September 1986, European journal of pharmacology,
J S Heyman, and J L Vaught, and H I Mosberg, and R C Haaseth, and F Porreca
January 1990, Progress in clinical and biological research,
J S Heyman, and J L Vaught, and H I Mosberg, and R C Haaseth, and F Porreca
January 1991, Life sciences,
J S Heyman, and J L Vaught, and H I Mosberg, and R C Haaseth, and F Porreca
January 1990, Psychopharmacology,
J S Heyman, and J L Vaught, and H I Mosberg, and R C Haaseth, and F Porreca
November 1994, Pharmacology, biochemistry, and behavior,
J S Heyman, and J L Vaught, and H I Mosberg, and R C Haaseth, and F Porreca
May 1989, The Journal of pharmacology and experimental therapeutics,
J S Heyman, and J L Vaught, and H I Mosberg, and R C Haaseth, and F Porreca
August 1990, The Journal of pharmacology and experimental therapeutics,
J S Heyman, and J L Vaught, and H I Mosberg, and R C Haaseth, and F Porreca
April 1997, European journal of pharmacology,
J S Heyman, and J L Vaught, and H I Mosberg, and R C Haaseth, and F Porreca
April 1987, European journal of pharmacology,
J S Heyman, and J L Vaught, and H I Mosberg, and R C Haaseth, and F Porreca
October 1989, European journal of pharmacology,
Copied contents to your clipboard!