Cloning of pMOL28-encoded nickel resistance genes and expression of the genes in Alcaligenes eutrophus and Pseudomonas spp. 1989

R A Siddiqui, and K Benthin, and H G Schlegel
Institut für Mikrobiologie, Universität Göttingen, Federal Republic of Germany.

The 163-kilobase-pair (kb) plasmid pMOL28, which determines inducible resistance to nickel, cobalt, chromate, and mercury salts in its native host Alcaligenes eutrophus CH34, was transferred to a derivative of A. eutrophus H16 and subjected to cloning procedures. After Tn5 transposon mutagenesis, restriction endonuclease analysis, and DNA-DNA hybridization, two DNA fragments, a 9.5-kb KpnI fragment and a 13.5-kb HindIII fragment (HKI), were isolated. HKI contained EK1, the KpnI fragment, as a subfragment flanked on both sides by short regions. Both fragments were ligated into the suicide vector pSUP202, the broad-host-range vector pVK101, and pUC19. Both fragments restored a nickel-sensitive Tn5 mutant to full nickel and cobalt resistance. The hybrid plasmid pVK101::HKI expressed full nickel resistance in all nickel-sensitive derivatives, either pMOL28-deficient or -defective, of the native host CH34. The hybrid plasmid pVK101::HKI also conferred nickel and cobalt resistance to A. eutrophus strains H16 and JMP222, Alcaligenes hydrogenophilus, Pseudomonas putida, and Pseudomonas oleovorans, but to a lower level of resistance. In all transconjugants the metal resistances coded by pVK101::HKI were expressed constitutively rather than inducibly. The hybrid plasmid metal resistance was not expressed in Escherichia coli. DNA sequences responsible for nickel resistance in newly isolated strains showed homology to the cloned pMOL28-encoded nickel and cobalt resistance determinant.

UI MeSH Term Description Entries
D008670 Metals Electropositive chemical elements characterized by ductility, malleability, luster, and conductance of heat and electricity. They can replace the hydrogen of an acid and form bases with hydroxyl radicals. (Grant & Hackh's Chemical Dictionary, 5th ed) Metal
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009532 Nickel A trace element with the atomic symbol Ni, atomic number 28, and atomic weight 58.69. It is a cofactor of the enzyme UREASE.
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011549 Pseudomonas A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants. Chryseomonas,Pseudomona,Flavimonas
D011815 R Factors A class of plasmids that transfer antibiotic resistance from one bacterium to another by conjugation. R Factor,R Plasmid,R Plasmids,Resistance Factor,Resistance Factors,Factor, R,Factor, Resistance,Factors, R,Factors, Resistance,Plasmid, R,Plasmids, R
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003227 Conjugation, Genetic A parasexual process in BACTERIA; ALGAE; FUNGI; and ciliate EUKARYOTA for achieving exchange of chromosome material during fusion of two cells. In bacteria, this is a uni-directional transfer of genetic material; in protozoa it is a bi-directional exchange. In algae and fungi, it is a form of sexual reproduction, with the union of male and female gametes. Bacterial Conjugation,Conjugation, Bacterial,Genetic Conjugation
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial

Related Publications

R A Siddiqui, and K Benthin, and H G Schlegel
September 1988, Journal of bacteriology,
R A Siddiqui, and K Benthin, and H G Schlegel
February 1993, Journal of bacteriology,
R A Siddiqui, and K Benthin, and H G Schlegel
November 1991, Applied and environmental microbiology,
R A Siddiqui, and K Benthin, and H G Schlegel
February 1996, Molecular & general genetics : MGG,
R A Siddiqui, and K Benthin, and H G Schlegel
April 1990, The Journal of biological chemistry,
R A Siddiqui, and K Benthin, and H G Schlegel
October 1987, Journal of bacteriology,
R A Siddiqui, and K Benthin, and H G Schlegel
September 1989, Journal of bacteriology,
R A Siddiqui, and K Benthin, and H G Schlegel
February 1991, The Journal of biological chemistry,
R A Siddiqui, and K Benthin, and H G Schlegel
April 1984, Journal of bacteriology,
Copied contents to your clipboard!