Isolation of microvascular endothelial cells from cadaveric corneal limbus. 2015

Peter J Gillies, and Laura J Bray, and Neil A Richardson, and Traian V Chirila, and Damien G Harkin
School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4001, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland, 4059, Australia; Queensland Eye Institute, 140 Melbourne Street, South Brisbane, Queensland, 4101, Australia.

Limbal microvascular endothelial cells (L-MVEC) contribute to formation of the corneal-limbal stem cell niche and to neovascularization of diseased and injuries corneas. Nevertheless, despite these important roles in corneal health and disease, few attempts have been made to isolate L-MVEC with the view to studying their biology in vitro. We therefore explored the feasibility of generating primary cultures of L-MVEC from cadaveric human tissue. We commenced our study by evaluating growth conditions (MesenCult-XF system) that have been previously found to be associated with expression of the endothelial cell surface marker thrombomodulin/CD141, in crude cultures established from collagenase-digests of limbal stroma. The potential presence of L-MVEC in these cultures was examined by flow cytometry using a more specific marker for vascular endothelial cells, CD31/PECAM-1. These studies demonstrated that the presence of CD141 in crude cultures established using the MesenCult-XF system is unrelated to L-MVEC. Thus we subsequently explored the use of magnetic assisted cell sorting (MACS) for CD31 as a tool for generating cultures of L-MVEC, in conjunction with more traditional endothelial cell growth conditions. These conditions consisted of gelatin-coated tissue culture plastic and MCDB-131 medium supplemented with foetal bovine serum (10% v/v), D-glucose (10 mg/mL), epidermal growth factor (10 ng/mL), heparin (50 μg/mL), hydrocortisone (1 μg/mL) and basic fibroblast growth factor (10 ng/mL). Our studies revealed that use of endothelial growth conditions are insufficient to generate significant numbers of L-MVEC in primary cultures established from cadaveric corneal stroma. Nevertheless, through use of positive-MACS selection for CD31 we were able to routinely observe L-MVEC in cultures derived from collagenase-digests of limbal stroma. The presence of L-MVEC in these cultures was confirmed by immunostaining for von Willebrand factor (vWF) and by ingestion of acetylated low-density lipoprotein. Moreover, the vWF(+) cells formed aligned cell-to-cell 'trains' when grown on Geltrex™. The purity of L-MVEC cultures was found to be unrelated to tissue donor age (32-80 years) or duration in eye bank corneal preservation medium prior to use (3-10 days in Optisol) (using multiple regression test). Optimal purity of L-MVEC cultures was achieved through use of two rounds of positive-MACS selection for CD31 (mean ± s.e.m, 65.0 ± 20.8%; p < 0.05). We propose that human L-MVEC cultures generated through these techniques, in conjunction with other cell types, will provide a useful tool for exploring the mechanisms of blood vessel cell growth in vitro.

UI MeSH Term Description Entries
D002102 Cadaver A dead body, usually a human body. Corpse,Cadavers,Corpses
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D016850 Limbus Corneae An annular transitional zone, approximately 1 mm wide, between the cornea and the bulbar conjunctiva and sclera. It is highly vascular and is involved in the metabolism of the cornea. It is ophthalmologically significant in that it appears on the outer surface of the eyeball as a slight furrow, marking the line between the clear cornea and the sclera. (Dictionary of Visual Science, 3d ed) Corneal Limbus,Corneoscleral Junction,Sclerocorneal Limbus,Corneoscleral Junctions,Junction, Corneoscleral,Junctions, Corneoscleral,Limbus, Corneal,Limbus, Sclerocorneal
D042783 Endothelial Cells Highly specialized EPITHELIAL CELLS that line the HEART; BLOOD VESSELS; and lymph vessels, forming the ENDOTHELIUM. They are polygonal in shape and joined together by TIGHT JUNCTIONS. The tight junctions allow for variable permeability to specific macromolecules that are transported across the endothelial layer. Capillary Endothelial Cells,Lymphatic Endothelial Cells,Vascular Endothelial Cells,Capillary Endothelial Cell,Cell, Capillary Endothelial,Cell, Endothelial,Cell, Lymphatic Endothelial,Cell, Vascular Endothelial,Cells, Capillary Endothelial,Cells, Endothelial,Cells, Lymphatic Endothelial,Cells, Vascular Endothelial,Endothelial Cell,Endothelial Cell, Capillary,Endothelial Cell, Lymphatic,Endothelial Cell, Vascular,Endothelial Cells, Capillary,Endothelial Cells, Lymphatic,Endothelial Cells, Vascular,Lymphatic Endothelial Cell,Vascular Endothelial Cell
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D055806 Microvessels The finer blood vessels of the vasculature that are generally less than 100 microns in internal diameter. Microvasculature,Microvascular Network,Microvascular Networks,Microvessel,Network, Microvascular,Networks, Microvascular

Related Publications

Peter J Gillies, and Laura J Bray, and Neil A Richardson, and Traian V Chirila, and Damien G Harkin
March 2022, International journal of molecular sciences,
Peter J Gillies, and Laura J Bray, and Neil A Richardson, and Traian V Chirila, and Damien G Harkin
June 2018, Bio-protocol,
Peter J Gillies, and Laura J Bray, and Neil A Richardson, and Traian V Chirila, and Damien G Harkin
June 1980, Investigative ophthalmology & visual science,
Peter J Gillies, and Laura J Bray, and Neil A Richardson, and Traian V Chirila, and Damien G Harkin
January 1999, Methods in molecular medicine,
Peter J Gillies, and Laura J Bray, and Neil A Richardson, and Traian V Chirila, and Damien G Harkin
July 1998, Sheng li ke xue jin zhan [Progress in physiology],
Peter J Gillies, and Laura J Bray, and Neil A Richardson, and Traian V Chirila, and Damien G Harkin
January 1993, Experimental eye research,
Peter J Gillies, and Laura J Bray, and Neil A Richardson, and Traian V Chirila, and Damien G Harkin
August 2006, Journal of neuroimmunology,
Peter J Gillies, and Laura J Bray, and Neil A Richardson, and Traian V Chirila, and Damien G Harkin
April 2006, Journal of cellular physiology,
Peter J Gillies, and Laura J Bray, and Neil A Richardson, and Traian V Chirila, and Damien G Harkin
June 1991, Biology of reproduction,
Peter J Gillies, and Laura J Bray, and Neil A Richardson, and Traian V Chirila, and Damien G Harkin
January 1996, In vitro cellular & developmental biology. Animal,
Copied contents to your clipboard!