Erythrocyte membrane (Ca2+ + Mg2+)-ATPase in human protein-energy malnutrition. 1989

O O Olorunsogo
Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria.

Calmodulin-free ghost membranes were prepared from erythrocytes of kwashiorkor children and from healthy children in the same age bracket. In the absence of calmodulin, the specific activity of Mg2+-dependent Ca2+-pumping ATPase (Ca2+ + Mg2+-ATPase) of kwashiorkor membranes was more than 40 percent lower than the specific activity of the normal enzymes, whose maximum velocity was increased by at least four-fold by the modulator protein. In contrast, the maximum velocity of the enzymes of kwashiorkor membranes was enhanced by calmodulin by about 1 1/2 times the basal activity of the normal enzymes and by 2 times the basal activity of the kwashiorkor enzymes. The affinity of the pump for ATP was lower in the membranes of kwashiorkor children (Km for ATP = 30.6 +/- 2.8 microM ATP) in comparison to normal membranes (Km for ATP = 21.7 +/- 2.0 microM ATP). Similarly, calmodulin-affinity of the enzymes, was lower in kwashiorkor membranes than in the normal membranes irrespective of source of calmodulin. Calmodulin from haemolysates of kwashiorkor red cells activated the enzymes of normal and kwashiorkor membranes to the same degree as calmodulin partially purified from the haemolysate of healthy children. A determination of the dependence of the activity of the pump on calcium in the absence and presence of calmodulin reveals that the affinity of the kwashiorkor enzymes for Ca2+ is at least 70 percent lower than that of enzymes of normal membranes. Altogether, these findings suggest that the Ca2+-pumping ATPase of kwashiorkor membranes is less functional than the enzymes of healthy erythrocytes.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007732 Kwashiorkor A syndrome produced by severe protein deficiency, characterized by retarded growth, changes in skin and hair pigment, edema, and pathologic changes in the liver, including fatty infiltration, necrosis, and fibrosis. The word is a local name in Gold Coast, Africa, meaning "displaced child". Although first reported from Africa, kwashiorkor is now known throughout the world, but mainly in the tropics and subtropics. It is considered to be related to marasmus. (From Dorland, 27th ed) Kwashiorkors
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D017301 Ca(2+) Mg(2+)-ATPase An enzyme that catalyzes the hydrolysis of ATP and is activated by millimolar concentrations of either Ca(2+) or Mg(2+). Unlike CA(2+)-TRANSPORTING ATPASE it does not require the second divalent cation for its activity, and is not sensitive to orthovanadate. (Prog Biophys Mol Biol 1988;52(1):1). A subgroup of EC 3.6.1.3. ATPase, Calcium Magnesium,ATPase, Magnesium,Adenosinetriphosphatase, Calcium, Magnesium,Adenosinetriphosphatase, Magnesium,Calcium Magnesium ATPase,Calcium Magnesium Adenosinetriphosphatase,Magnesium ATPase,Magnesium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium, Magnesium,Adenosine Triphosphatase, Magnesium,Ca Mg-ATPase,Ca2+-Mg2+ ATPase,Calcium Magnesium Adenosine Triphosphatase,Mg2+-ATPase,Mg2+-Dependent ATPase,ATPase, Ca2+-Mg2+,ATPase, Mg2+-Dependent,Adenosinetriphosphatase, Calcium Magnesium,Ca Mg ATPase,Ca2+ Mg2+ ATPase,Magnesium Adenosine Triphosphatase,Mg2+ ATPase,Mg2+ Dependent ATPase

Related Publications

O O Olorunsogo
January 1983, Biochimica et biophysica acta,
O O Olorunsogo
January 1984, Biochimica et biophysica acta,
O O Olorunsogo
January 1979, The International journal of biochemistry,
O O Olorunsogo
July 1977, Biochemical and biophysical research communications,
O O Olorunsogo
January 1979, The International journal of biochemistry,
O O Olorunsogo
January 1978, The International journal of biochemistry,
O O Olorunsogo
December 1988, Biochimica et biophysica acta,
Copied contents to your clipboard!