Genome-wide transcriptional profiling reveals molecular signatures of secondary xylem differentiation in Populus tomentosa. 2014

X H Yang, and X G Li, and B L Li, and D Q Zhang
National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.

Wood formation occurs via cell division, primary cell wall and secondary wall formation, and programmed cell death in the vascular cambium. Transcriptional profiling of secondary xylem differentiation is essential for understanding the molecular mechanisms underlying wood formation. Differential gene expression in secondary xylem differentiation of Populus has been previously investigated using cDNA microarray analysis. However, little is known about the molecular mechanisms from a genome-wide perspective. In this study, the Affymetrix poplar genome chips containing 61,413 probes were used to investigate the changes in the transcriptome during secondary xylem differentiation in Chinese white poplar (Populus tomentosa). Two xylem tissues (newly formed and lignified) were sampled for genome-wide transcriptional profiling. In total, 6843 genes (~11%) were identified with differential expression in the two xylem tissues. Many genes involved in cell division, primary wall modification, and cellulose synthesis were preferentially expressed in the newly formed xylem. In contrast, many genes, including 4-coumarate:cinnamate-4-hydroxylase (C4H), 4-coumarate:CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and caffeoyl CoA 3-O-methyltransferase (CCoAOMT), associated with lignin biosynthesis were more transcribed in the lignified xylem. The two xylem tissues also showed differential expression of genes related to various hormones; thus, the secondary xylem differentiation could be regulated by hormone signaling. Furthermore, many transcription factor genes were preferentially expressed in the lignified xylem, suggesting that wood lignification involves extensive transcription regulation. The genome-wide transcriptional profiling of secondary xylem differentiation could provide additional insights into the molecular basis of wood formation in poplar species.

UI MeSH Term Description Entries
D008031 Lignin The most abundant natural aromatic organic polymer found in all vascular plants. Lignin together with cellulose and hemicellulose are the major cell wall components of the fibers of all wood and grass species. Lignin is composed of coniferyl, p-coumaryl, and sinapyl alcohols in varying ratios in different plant species. (From Merck Index, 11th ed) Lignins
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002473 Cell Wall The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents. Cell Walls,Wall, Cell,Walls, Cell
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D052584 Xylem Plant tissue that carries water up the root and stem. Xylem cell walls derive most of their strength from LIGNIN. The vessels are similar to PHLOEM sieve tubes but lack companion cells and do not have perforated sides and pores. Xylems
D058977 Molecular Sequence Annotation The addition of descriptive information about the function or structure of a molecular sequence to its MOLECULAR SEQUENCE DATA record. Gene Annotation,Protein Annotation,Annotation, Gene,Annotation, Molecular Sequence,Annotation, Protein,Annotations, Gene,Annotations, Molecular Sequence,Annotations, Protein,Gene Annotations,Molecular Sequence Annotations,Protein Annotations,Sequence Annotation, Molecular,Sequence Annotations, Molecular
D059467 Transcriptome The pattern of GENE EXPRESSION at the level of genetic transcription in a specific organism or under specific circumstances in specific cells. Transcriptomes,Gene Expression Profiles,Gene Expression Signatures,Transcriptome Profiles,Expression Profile, Gene,Expression Profiles, Gene,Expression Signature, Gene,Expression Signatures, Gene,Gene Expression Profile,Gene Expression Signature,Profile, Gene Expression,Profile, Transcriptome,Profiles, Gene Expression,Profiles, Transcriptome,Signature, Gene Expression,Signatures, Gene Expression,Transcriptome Profile

Related Publications

X H Yang, and X G Li, and B L Li, and D Q Zhang
August 2021, International journal of molecular sciences,
X H Yang, and X G Li, and B L Li, and D Q Zhang
May 2023, Genes,
X H Yang, and X G Li, and B L Li, and D Q Zhang
December 2009, BMC genomics,
X H Yang, and X G Li, and B L Li, and D Q Zhang
July 2021, Journal of integrative plant biology,
X H Yang, and X G Li, and B L Li, and D Q Zhang
January 2017, Methods in molecular biology (Clifton, N.J.),
X H Yang, and X G Li, and B L Li, and D Q Zhang
April 2018, Genes & genomics,
X H Yang, and X G Li, and B L Li, and D Q Zhang
August 2019, BMC plant biology,
X H Yang, and X G Li, and B L Li, and D Q Zhang
June 2016, Asia-Pacific journal of clinical oncology,
Copied contents to your clipboard!