Free radical lipid oxidation affects cholesterol transfer between lipoproteins and erythrocytes. 1989

O A Azizova, and O M Panasenko, and T V Vol'nova, and Y A Vladimirov
Research Institute of Physico-Chemical Medicine, Moscow, U.S.S.R.

Human erythrocytes were incubated for 5 h at 37 degrees C with lipoproteins (LP), preliminary oxidized to different extent, as assessed by thiobarbituric acid (TBA) test. Cholesterol content in the cells was increased by 12-14% after incubation with low-density lipoproteins (LDL) along with augmentation of order parameter and rotational correlation time of spin-labeled stearic acids incorporated into membranes. If erythrocytes were incubated with oxidized LDL, containing 2.5-4 times more TBA-reactive material than native ones, cellular content of cholesterol was increased by 24-28%. In contrast, high-density lipoproteins (HDL2 and HDL3) removed cholesterol from cell membranes, when incubated with erythrocytes. This was followed by increased fluidity of membrane lipid phase as detected by the spin probe method. Oxidation of HDL2 and HDL3 decreased their ability to accept cholesterol from cell membranes. No detectable accumulation of TBA-reactive material was observed in the samples during the incubation. The antioxidant, butylated hydroxytoluene (BHT), in the concentration of 10(-5) M did not influence the cholesterol transfer between LP and erythrocytes. Hence, the effects of lipid peroxidation (LPO) on the cholesterol transfer seem to result from LP alterations by oxidation rather than from free radical reactions occurring during the incubation. By increasing cholesterol-donating ability of LDL and inhibition of cholesterol-accepting capacity of HDL lipid peroxidation in LP may activate cholesterol accumulation in blood vessel cells and thus contribute to atherosclerosis.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002084 Butylated Hydroxytoluene A di-tert-butyl PHENOL with antioxidant properties. Butylhydroxytoluene,2,6-Bis(1,1-dimethylethyl)-4-methylphenol,2,6-Di-t-butyl-4-methylphenol,2,6-Di-tert-butyl-4-methylphenol,2,6-Di-tert-butyl-p-cresol,4-Methyl-2,6-ditertbutylphenol,BHT,Di-tert-butyl-methylphenol,Dibunol,Ionol,Ionol (BHT),2,6 Di t butyl 4 methylphenol,2,6 Di tert butyl 4 methylphenol,2,6 Di tert butyl p cresol,4 Methyl 2,6 ditertbutylphenol,Di tert butyl methylphenol,Hydroxytoluene, Butylated
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle

Related Publications

O A Azizova, and O M Panasenko, and T V Vol'nova, and Y A Vladimirov
July 1972, Pathology,
O A Azizova, and O M Panasenko, and T V Vol'nova, and Y A Vladimirov
January 1994, Fiziolohichnyi zhurnal (Kiev, Ukraine : 1994),
O A Azizova, and O M Panasenko, and T V Vol'nova, and Y A Vladimirov
December 1964, Biochimica et biophysica acta,
O A Azizova, and O M Panasenko, and T V Vol'nova, and Y A Vladimirov
January 2001, BMC biochemistry,
O A Azizova, and O M Panasenko, and T V Vol'nova, and Y A Vladimirov
January 1975, Journal of lipid research,
O A Azizova, and O M Panasenko, and T V Vol'nova, and Y A Vladimirov
February 1971, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
O A Azizova, and O M Panasenko, and T V Vol'nova, and Y A Vladimirov
August 1994, Biochemical and biophysical research communications,
O A Azizova, and O M Panasenko, and T V Vol'nova, and Y A Vladimirov
May 1982, Molecular pharmacology,
O A Azizova, and O M Panasenko, and T V Vol'nova, and Y A Vladimirov
April 2016, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
O A Azizova, and O M Panasenko, and T V Vol'nova, and Y A Vladimirov
August 1980, Biochimica et biophysica acta,
Copied contents to your clipboard!