Degradation of apolipoprotein II mRNA occurs via endonucleolytic cleavage at 5'-AAU-3'/5'-UAA-3' elements in single-stranded loop domains of the 3'-noncoding region. 1989

R Binder, and S P Hwang, and R Ratnasabapathy, and D L Williams
Department of Pharmacological Sciences, University of New York, Stony Brook 11794.

Degradation intermediates of the estrogen-regulated apolipoprotein (apo) II mRNA were identified by S1 nuclease mapping and primer extension analysis. S1 mapping of poly(A)-RNA detected a series of mRNAs truncated at specific sites in the 3'-noncoding region. Many of these sites were also detected by primer extension analysis indicating that truncated molecules resulted from endonucleolytic cleavage in the 3'-noncoding region. Identical cleavage sites were seen with RNA from estrogen-treated animals or from animals withdrawn from hormone under conditions where apoII mRNA degraded in the slow (t1/2 = 13 h) or rapid (t1/2 = 1.5 h) decay mode. No differences were seen in poly(A) tail length or heterogeneity among these conditions. These results indicate that the estrogen-induced alteration in apoII mRNA turnover does not involve a new pathway of degradation, but, more likely, involves an increased targeting of the mRNA for degradation by a preexisting pathway. These data are consistent with a mechanism in which the initial step in apoII mRNA degradation is an endonucleolytic cleavage in the 3'-noncoding region without prior removal of the poly(A) tail. The endonucleolytic cleavage sites occurred predominantly at 5'-AAU-3' or 5'-UAA-3' trinucleotides found in single-stranded domains in a secondary structure model of the naked mRNA (Hwang, S-P. L., Eisenberg, M., Binder, R., Shelness, G. S., and Williams, D. L. (1989) J. Biol. Chem. 264, 8410-8418). The structure of the 3'-noncoding region in polyribosomal messenger ribonucleoprotein was examined by titrations of liver homogenates with dimethyl sulfate and cobra venom RNase. The results suggest that the typical cleavage site is a 5'-AAU-3' or 5'-UAA-3' trinucleotide in an accessible single-stranded loop domain. Single-stranded domains alone or accessible domains alone are not sufficient for cleavage. Similarly, 5'-AAU-3' or 5'-UAA-3' trinucleotides alone are not sufficient for cleavage. Localization of these trinucleotides to accessible single-stranded domains in the polyribosomal messenger ribonucleoprotein may provide the specificity for cleavage during targeted degradation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009710 Nucleotide Mapping Two-dimensional separation and analysis of nucleotides. Fingerprints, Nucleotide,Fingerprint, Nucleotide,Mapping, Nucleotide,Mappings, Nucleotide,Nucleotide Fingerprint,Nucleotide Fingerprints,Nucleotide Mappings
D011132 Polyribosomes A multiribosomal structure representing a linear array of RIBOSOMES held together by messenger RNA; (RNA, MESSENGER); They represent the active complexes in cellular protein synthesis and are able to incorporate amino acids into polypeptides both in vivo and in vitro. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Polysomes,Polyribosome,Polysome
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004720 Endonucleases Enzymes that catalyze the hydrolysis of the internal bonds and thereby the formation of polynucleotides or oligonucleotides from ribo- or deoxyribonucleotide chains. EC 3.1.-. Endonuclease

Related Publications

R Binder, and S P Hwang, and R Ratnasabapathy, and D L Williams
July 1992, Molecular and cellular biology,
R Binder, and S P Hwang, and R Ratnasabapathy, and D L Williams
August 1990, The Journal of biological chemistry,
R Binder, and S P Hwang, and R Ratnasabapathy, and D L Williams
August 1990, Journal of bacteriology,
R Binder, and S P Hwang, and R Ratnasabapathy, and D L Williams
June 2004, Biochemistry,
R Binder, and S P Hwang, and R Ratnasabapathy, and D L Williams
April 2002, The Journal of steroid biochemistry and molecular biology,
R Binder, and S P Hwang, and R Ratnasabapathy, and D L Williams
May 1992, Molecular microbiology,
R Binder, and S P Hwang, and R Ratnasabapathy, and D L Williams
January 1985, The Journal of biological chemistry,
R Binder, and S P Hwang, and R Ratnasabapathy, and D L Williams
July 1988, Journal of virology,
R Binder, and S P Hwang, and R Ratnasabapathy, and D L Williams
December 1995, Nucleic acids research,
R Binder, and S P Hwang, and R Ratnasabapathy, and D L Williams
December 1995, Molecular and cellular biology,
Copied contents to your clipboard!