Targeting chromatin to improve radiation response. 2015

M M Olcina, and S O'Dell, and E M Hammond
CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.

Chromatin, the structure formed by the wrapping of approximately 146 base pairs of DNA around an octamer of histones, has a profound impact on numerous DNA-based processes. Chromatin modifications and chromatin remodellers have recently been implicated in important aspects of the DNA damage response including facilitating the initial sensing of the damage as well as subsequent recruitment of repair factors. Radiation is an effective cancer therapy for a large number of tumours, and there is considerable interest in finding approaches that might further increase the efficacy of radiotherapy. The use of radiation leads to the generation of DNA damage and, therefore, agents that can affect the sensing and repair of DNA damage may have an impact on overall radiation efficacy. The chromatin modifications as well as chromatin modifiers that have been associated with the DNA damage response will be summarized in this review. An emphasis will be placed on those processes that can be pharmacologically manipulated with currently available inhibitors. The rationale for the use of these inhibitors in combination with radiation will also be described.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D011839 Radiation, Ionizing ELECTROMAGNETIC RADIATION or particle radiation (high energy ELEMENTARY PARTICLES) capable of directly or indirectly producing IONS in its passage through matter. The wavelengths of ionizing electromagnetic radiation are equal to or smaller than those of short (far) ultraviolet radiation and include gamma and X-rays. Ionizing Radiation,Ionizing Radiations,Radiations, Ionizing
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D042822 Genomic Instability An increased tendency of the GENOME to acquire MUTATIONS when various processes involved in maintaining and replicating the genome are dysfunctional. Genome Instability,Genome Stability,Genomic Stability,Genome Instabilities,Genome Stabilities,Genomic Instabilities,Genomic Stabilities,Instabilities, Genome,Instabilities, Genomic,Instability, Genome,Instability, Genomic,Stabilities, Genome,Stabilities, Genomic,Stability, Genome,Stability, Genomic

Related Publications

M M Olcina, and S O'Dell, and E M Hammond
April 2004, Expert review of anticancer therapy,
M M Olcina, and S O'Dell, and E M Hammond
December 2016, Genes & development,
M M Olcina, and S O'Dell, and E M Hammond
January 2012, Frontiers in oncology,
M M Olcina, and S O'Dell, and E M Hammond
May 2015, Radiation research,
M M Olcina, and S O'Dell, and E M Hammond
February 2018, Journal of thoracic disease,
M M Olcina, and S O'Dell, and E M Hammond
October 2020, Journal of experimental & clinical cancer research : CR,
M M Olcina, and S O'Dell, and E M Hammond
December 2021, Journal of experimental & clinical cancer research : CR,
M M Olcina, and S O'Dell, and E M Hammond
January 2021, Translational oncology,
M M Olcina, and S O'Dell, and E M Hammond
November 2013, Genes & development,
M M Olcina, and S O'Dell, and E M Hammond
January 2019, Frontiers in oncology,
Copied contents to your clipboard!