The effect of drugs and other compounds on the ciliary beat frequency of human respiratory epithelium. 2014

Alan D Workman, and Noam A Cohen
Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

BACKGROUND Cilia in the human respiratory tract play a critical role in clearing mucus and debris from the airways. Their function can be affected by a number of drugs or other substances, many of which alter ciliary beat frequency (CBF). This has implications for diseases of the respiratory tract and nasal drug delivery. This article is a systematic review of the literature that examines 229 substances and their effect on CBF. METHODS MEDLINE was the primary database used for data collection. Eligibility criteria based on experimental design were established, and 152 studies were ultimately selected. Each individual trial for the substances tested was noted whenever possible, including concentration, time course, specific effect on CBF, and source of tissue. RESULTS There was a high degree of heterogeneity between the various experiments examined in this article. Substances and their general effects (increase, no effect, decrease) were grouped into six categories: antimicrobials and antivirals, pharmacologics, human biological products, organisms and toxins, drug excipients, and natural compounds/other manipulations. CONCLUSIONS Organisms, toxins, and drug excipients tend to show a cilioinhibitory effect, whereas substances in all other categories had mixed effects. All studies examined were in vitro experiments, and application of the results in vivo is confounded by several factors. The data presented in this article should be useful in future respiratory research and examination of compounds for therapeutic and drug delivery purposes.

UI MeSH Term Description Entries
D012140 Respiratory Tract Diseases Diseases involving the RESPIRATORY SYSTEM. Respiratory Diseases,Respiratory System Diseases,Disease, Respiratory System,Disease, Respiratory Tract,Respiratory System Disease,Respiratory Tract Disease
D002923 Cilia Populations of thin, motile processes found covering the surface of ciliates (CILIOPHORA) or the free surface of the cells making up ciliated EPITHELIUM. Each cilium arises from a basic granule in the superficial layer of CYTOPLASM. The movement of cilia propels ciliates through the liquid in which they live. The movement of cilia on a ciliated epithelium serves to propel a surface layer of mucus or fluid. (King & Stansfield, A Dictionary of Genetics, 4th ed) Motile Cilia,Motile Cilium,Nodal Cilia,Nodal Cilium,Primary Cilia,Primary Cilium,Cilium,Cilia, Motile,Cilia, Nodal,Cilia, Primary,Cilium, Motile,Cilium, Nodal,Cilium, Primary
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000890 Anti-Infective Agents Substances that prevent infectious agents or organisms from spreading or kill infectious agents in order to prevent the spread of infection. Anti-Infective Agent,Anti-Microbial Agent,Antimicrobial Agent,Microbicide,Microbicides,Anti-Microbial Agents,Antiinfective Agents,Antimicrobial Agents,Agent, Anti-Infective,Agent, Anti-Microbial,Agent, Antimicrobial,Agents, Anti-Infective,Agents, Anti-Microbial,Agents, Antiinfective,Agents, Antimicrobial,Anti Infective Agent,Anti Infective Agents,Anti Microbial Agent,Anti Microbial Agents
D016503 Drug Delivery Systems Systems for the delivery of drugs to target sites of pharmacological actions. Technologies employed include those concerning drug preparation, route of administration, site targeting, metabolism, and toxicity. Drug Targeting,Delivery System, Drug,Delivery Systems, Drug,Drug Delivery System,Drug Targetings,System, Drug Delivery,Systems, Drug Delivery,Targeting, Drug,Targetings, Drug
D020545 Respiratory Mucosa The mucous membrane lining the RESPIRATORY TRACT, including the NASAL CAVITY; the LARYNX; the TRACHEA; and the BRONCHI tree. The respiratory mucosa consists of various types of epithelial cells ranging from ciliated columnar to simple squamous, mucous GOBLET CELLS, and glands containing both mucous and serous cells. Respiratory Epithelium,Epithelium, Respiratory,Mucosa, Respiratory
D035843 Biomedical Research Research that involves the application of the natural sciences, especially biology and physiology, to medicine. Medical Research,Experimental Medicine,Investigational Medicine,Investigative Medicine,Research, Biomedical,Research, Medical,Medicine, Experimental,Medicine, Investigational,Medicine, Investigative

Related Publications

Alan D Workman, and Noam A Cohen
May 1998, British journal of anaesthesia,
Alan D Workman, and Noam A Cohen
August 1991, The Journal of physiology,
Alan D Workman, and Noam A Cohen
January 1981, The American review of respiratory disease,
Alan D Workman, and Noam A Cohen
April 1985, Respiration physiology,
Alan D Workman, and Noam A Cohen
January 1982, The American review of respiratory disease,
Alan D Workman, and Noam A Cohen
January 1981, Arzneimittel-Forschung,
Alan D Workman, and Noam A Cohen
August 2016, Zhonghua er bi yan hou tou jing wai ke za zhi = Chinese journal of otorhinolaryngology head and neck surgery,
Copied contents to your clipboard!