Regulation of Leydig cell function in primary culture by inhibin and activin. 1989

T Lin, and J K Calkins, and P L Morris, and W Vale, and C W Bardin
Medical Service, WJB Dorn Veterans' Hospital, Columbia, South Carolina 29201.

Inhibin and activin are gonadal glycoproteins that selectively inhibit and stimulate FSH release, respectively. Previously we have reported that transforming growth factor-beta inhibited hCG-stimulated testosterone formation in mature Leydig cells. In the present study we evaluated the effects of other members of the transforming growth factor-beta family, inhibin and activin, on Leydig cell function. We found that activin (0.1-10 ng/ml) had no effect on basal testosterone formation, but inhibited hCG-stimulated testosterone formation in a dose-dependent manner. Activin (10 ng/ml) inhibited hCG-stimulated testosterone formation by 42%. Activin also inhibited hCG-stimulated cAMP formation. In the presence of activin (5 ng/ml), forskolin (10 microM)- and 8-bromo-cAMP (0.1 mM)-induced testosterone formation were reduced about one third. Conversions of pregnenolone and progesterone to testosterone were also blocked by activin. Interestingly, [125I]hCG binding to Leydig cells and forskolin-induced cAMP formation were not affected by the addition of activin. In contrast to activin, inhibin (0.1-10 ng/ml) had no effect on hCG-induced testosterone formation at any concentration used. However, the inhibitory effects of activin on Leydig cell function were reversed by the concomitant addition of inhibin. Our results suggest that activin inhibits testosterone formation by the Leydig cells derived from normal mature rats. Multiple steps of the steroidogenic pathway are affected by testosterone. Inhibin alone has no effect, but reverses the inhibitory action of activin.

UI MeSH Term Description Entries
D007265 Inhibins Glycoproteins that inhibit pituitary FOLLICLE STIMULATING HORMONE secretion. Inhibins are secreted by the Sertoli cells of the testes, the granulosa cells of the ovarian follicles, the placenta, and other tissues. Inhibins and ACTIVINS are modulators of FOLLICLE STIMULATING HORMONE secretions; both groups belong to the TGF-beta superfamily, as the TRANSFORMING GROWTH FACTOR BETA. Inhibins consist of a disulfide-linked heterodimer with a unique alpha linked to either a beta A or a beta B subunit to form inhibin A or inhibin B, respectively Female Inhibin,Inhibin,Inhibin-F,Inhibins, Female,Inhibins, Testicular,Ovarian Inhibin,Testicular Inhibin,Female Inhibins,Inhibin F,Inhibin, Female,Inhibin, Ovarian,Inhibin, Testicular,Testicular Inhibins
D007985 Leydig Cells Steroid-producing cells in the interstitial tissue of the TESTIS. They are under the regulation of PITUITARY HORMONES; LUTEINIZING HORMONE; or interstitial cell-stimulating hormone. TESTOSTERONE is the major androgen (ANDROGENS) produced. Interstitial Cells, Testicular,Leydig Cell,Testicular Interstitial Cell,Testicular Interstitial Cells,Cell, Leydig,Cell, Testicular Interstitial,Cells, Leydig,Cells, Testicular Interstitial,Interstitial Cell, Testicular
D008297 Male Males
D011284 Pregnenolone A 21-carbon steroid, derived from CHOLESTEROL and found in steroid hormone-producing tissues. Pregnenolone is the precursor to GONADAL STEROID HORMONES and the adrenal CORTICOSTEROIDS. 5-Pregnen-3-beta-ol-20-one,5 Pregnen 3 beta ol 20 one
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477
D006063 Chorionic Gonadotropin A gonadotropic glycoprotein hormone produced primarily by the PLACENTA. Similar to the pituitary LUTEINIZING HORMONE in structure and function, chorionic gonadotropin is involved in maintaining the CORPUS LUTEUM during pregnancy. CG consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is virtually identical to the alpha subunits of the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity (CHORIONIC GONADOTROPIN, BETA SUBUNIT, HUMAN). Chorionic Gonadotropin, Human,HCG (Human Chorionic Gonadotropin),Biogonadil,Choriogonadotropin,Choriogonin,Chorulon,Gonabion,Human Chorionic Gonadotropin,Pregnyl,Gonadotropin, Chorionic,Gonadotropin, Human Chorionic
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic

Related Publications

T Lin, and J K Calkins, and P L Morris, and W Vale, and C W Bardin
October 1992, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
T Lin, and J K Calkins, and P L Morris, and W Vale, and C W Bardin
October 2004, Molecular and cellular endocrinology,
T Lin, and J K Calkins, and P L Morris, and W Vale, and C W Bardin
August 2004, Seminars in reproductive medicine,
T Lin, and J K Calkins, and P L Morris, and W Vale, and C W Bardin
December 1994, Trends in endocrinology and metabolism: TEM,
T Lin, and J K Calkins, and P L Morris, and W Vale, and C W Bardin
March 2018, Andrology,
T Lin, and J K Calkins, and P L Morris, and W Vale, and C W Bardin
April 2006, Nihon rinsho. Japanese journal of clinical medicine,
T Lin, and J K Calkins, and P L Morris, and W Vale, and C W Bardin
July 1993, Molecular and cellular endocrinology,
T Lin, and J K Calkins, and P L Morris, and W Vale, and C W Bardin
October 1993, The Journal of clinical endocrinology and metabolism,
T Lin, and J K Calkins, and P L Morris, and W Vale, and C W Bardin
December 1991, Endocrinology,
T Lin, and J K Calkins, and P L Morris, and W Vale, and C W Bardin
December 1994, Placenta,
Copied contents to your clipboard!