GABAergic drugs and lordosis behavior in the female rat. 1989

A Agmo, and P Soria, and R Paredes
Department of Psychology, Universidad AnĂ¡huac, Mexico.

Agents modifying GABAergic neurotransmission were administered to ovariectomized rats treated with different doses of estradiol benzoate (EB) + progesterone (P) or with EB alone. Hormone treatments were designed to induce an intermediate level of receptivity in order to be able to observe both stimulatory and inhibitory effects on lordosis behavior. Both the GABAA receptor agonist THIP and the GABAB receptor agonist baclofen inhibited lordosis behavior at doses from 20 and 5 mg/kg, respectively. The GABA transaminase inhibitor gamma-acetylen GABA (GAG) and the GABA agonist 3-aminopropanesulfonic acid had no effects, even when high doses were administered. The GABAA receptor antagonist bicuculline had no effect by itself nor did it block the effects of THIP. It is therefore suggested that the GABAA receptor is of slight importance in the control of lordosis behavior. No evidence could be found supporting the hypothesis that an interaction between P and GABA is important for hormone-induced receptivity. It does not appear likely that motor disturbances are responsible for the inhibitory effects of baclofen and THIP. The exact mechanism by which these drugs inhibit lordosis behavior is not clear at present.

UI MeSH Term Description Entries
D007555 Isoxazoles Azoles with an OXYGEN and a NITROGEN next to each other at the 1,2 positions, in contrast to OXAZOLES that have nitrogens at the 1,3 positions. Isoxazole
D010080 Oxazoles Five-membered heterocyclic ring structures containing an oxygen in the 1-position and a nitrogen in the 3-position, in distinction from ISOXAZOLES where they are at the 1,2 positions. Oxazole,1,3-Oxazolium-5-Oxides,Munchnones,1,3 Oxazolium 5 Oxides
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000480 Alkynes Hydrocarbons with at least one triple bond in the linear portion, of the general formula Cn-H2n-2. Acetylenic Compounds,Alkyne,Acetylenes
D000614 Aminocaproates Amino derivatives of caproic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the amino caproic acid structure. Aminocaproic Acids,Aminocaproic Acid Derivatives,Aminohexanoates,Aminohexanoic Acid Derivatives,Aminohexanoic Acids,Acid Derivatives, Aminocaproic,Acid Derivatives, Aminohexanoic,Acids, Aminocaproic,Acids, Aminohexanoic,Derivatives, Aminocaproic Acid,Derivatives, Aminohexanoic Acid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A Agmo, and P Soria, and R Paredes
July 2004, Brain research,
A Agmo, and P Soria, and R Paredes
March 1986, Pharmacology, biochemistry, and behavior,
A Agmo, and P Soria, and R Paredes
January 1981, Experimental brain research,
A Agmo, and P Soria, and R Paredes
April 1999, Brain research,
A Agmo, and P Soria, and R Paredes
April 1988, Pharmacology, biochemistry, and behavior,
A Agmo, and P Soria, and R Paredes
December 1979, Hormones and behavior,
A Agmo, and P Soria, and R Paredes
January 1993, Neuroscience and biobehavioral reviews,
A Agmo, and P Soria, and R Paredes
November 1983, Physiology & behavior,
A Agmo, and P Soria, and R Paredes
June 1985, Neuropeptides,
A Agmo, and P Soria, and R Paredes
April 2007, Pharmacology, biochemistry, and behavior,
Copied contents to your clipboard!