Characterization of conjugal transfer functions of Agrobacterium tumefaciens Ti plasmid pTiC58. 1989

S B von Bodman, and J E McCutchan, and S K Farrand
Department of Plant Pathology, University of Illinois, Urbana 61801.

Physical characterization of 13 transposon Tn5 insertions within the agrocinopine-independent, transfer-constitutive Ti plasmid pTiC58Trac identified three separate loci essential for conjugation of this nopaline/agrocinopine A + B-type Ti plasmid. Complementation analysis with relevant subcloned DNAs indicated that the three physically separated blocks of conjugal genes constitute distinct complementation groups. Two independent Tn5 insertions within the wild-type, agrocinopine-dependent, repressed pTiC58 plasmid resulted in constitutive expression of conjugal transfer. These two insertions were physically indistinguishable and could not be complemented in trans. However, the Trac phenotype resulted when the Tn5-mutated fragment cointegrated into the wild-type Ti plasmid. While the spontaneous Trac mutant Ti plasmids were also derepressed for agrocinopine catabolism, those generated by Tn5 insertions remained inducible, indicating that this apparent cis-acting site is different from that affected in the spontaneous mutants. No chromosomal Tn5 insertion mutations were obtained that affected conjugal transfer. An octopine-type Ti plasmid, resident in different Agrobacterium tumefaciens chvB mutants, transferred at normal frequencies, demonstrating that this virulence locus affecting plant cell binding is not required for Ti plasmid conjugation. None of our conjugal mutants limited tumor development on Kalanchoe diagremontiana. Known lesions in pTiC58 vir loci had no effect on conjugal transfer of this Ti plasmid. These results show that pTiC58 Ti plasmid conjugal transfer occurs by functions independent of those required for transfer of DNA to plant cells.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D000227 Adenine Nucleotides Adenine Nucleotide,Adenosine Phosphate,Adenosine Phosphates,Nucleotide, Adenine,Nucleotides, Adenine,Phosphate, Adenosine,Phosphates, Adenosine
D012231 Rhizobium A genus of gram-negative, aerobic, rod-shaped bacteria that activate PLANT ROOT NODULATION in leguminous plants. Members of this genus are nitrogen-fixing and common soil inhabitants.
D013403 Sugar Phosphates Phosphates, Sugar
D014161 Transduction, Genetic The transfer of bacterial DNA by phages from an infected bacterium to another bacterium. This also refers to the transfer of genes into eukaryotic cells by viruses. This naturally occurring process is routinely employed as a GENE TRANSFER TECHNIQUE. Genetic Transduction,Genetic Transductions,Transductions, Genetic

Related Publications

S B von Bodman, and J E McCutchan, and S K Farrand
March 1990, Journal of bacteriology,
S B von Bodman, and J E McCutchan, and S K Farrand
April 1987, Journal of bacteriology,
S B von Bodman, and J E McCutchan, and S K Farrand
March 1991, Journal of bacteriology,
S B von Bodman, and J E McCutchan, and S K Farrand
November 1989, Journal of bacteriology,
S B von Bodman, and J E McCutchan, and S K Farrand
November 1987, Journal of bacteriology,
S B von Bodman, and J E McCutchan, and S K Farrand
September 1989, Molecular microbiology,
S B von Bodman, and J E McCutchan, and S K Farrand
June 1998, Proceedings of the National Academy of Sciences of the United States of America,
S B von Bodman, and J E McCutchan, and S K Farrand
April 1993, Nature,
S B von Bodman, and J E McCutchan, and S K Farrand
May 1985, Proceedings of the National Academy of Sciences of the United States of America,
S B von Bodman, and J E McCutchan, and S K Farrand
March 1989, Molecular microbiology,
Copied contents to your clipboard!