Identification and sequence analysis of the Rhizobium meliloti dctA gene encoding the C4-dicarboxylate carrier. 1989

T Engelke, and D Jording, and D Kapp, and A Pühler
Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Federal Republic of Germany.

Transposon Tn5-induced C4-dicarboxylate transport mutants of Rhizobium meliloti 2011 which could be complemented by cosmid pRmSC121 were subdivided into two classes. Class I mutants (RMS37 and RMS938) were defective in symbiotic C4-dicarboxylate transport and in nitrogen fixation. They were mutated in the structural gene dctA, which codes for the C4-dicarboxylate carrier. Class II mutants (RMS11, RMS16, RMS17, RMS24, and RMS31) expressed reduced activity in symbiotic C4-dicarboxylate transport and in nitrogen fixation. These mutants were mutated in regulatory dct genes which do not play an essential role in the symbiotic state. Thin sections of alfalfa nodules induced by the wild type and class I and class II mutants were analyzed by light microscopy. Class mutants induced typical Fix- nodules, showing a large senescent zone, whereas nodules induced by class II mutants only differed in an enhanced content of starch granules compared with wild-type nodules. Class I mutants could be complemented by a 2.1-kilobase SalI-HindIII subfragment of cosmid pRmSC121. DNA sequencing of this fragment resulted in the identification of an open reading frame, which was designated dctA because Tn5 insertion sites of the class I mutants mapped within this coding region. The dctA gene was preceded by a nif consensus promoter and an upstream NifA-binding element. Upstream of the dctA promoter, the 5' end of the R. meliloti dctB gene could be localized. The amino acid sequence of the N-terminal part of the R. meliloti DctB protein shared 49% homology with the corresponding part of the R. leguminosarum DctB protein. The DctA protein consisted of 441 or 453 amino acids due to two possible ATG start codons, with calculated molecular masses of 46.1 and 47.6 kilodaltons, respectively. The hydrophobicity plot suggests that DctA is a membrane protein with several membrane passages. The amino acid sequences of the R. meliloti and the R. leguminosarum DctA proteins were highly conserved (82%).

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

T Engelke, and D Jording, and D Kapp, and A Pühler
January 1990, Molecular plant-microbe interactions : MPMI,
T Engelke, and D Jording, and D Kapp, and A Pühler
June 1989, Molecular microbiology,
T Engelke, and D Jording, and D Kapp, and A Pühler
June 1992, Canadian journal of microbiology,
T Engelke, and D Jording, and D Kapp, and A Pühler
January 1992, Canadian journal of microbiology,
T Engelke, and D Jording, and D Kapp, and A Pühler
June 2010, Journal of bacteriology,
T Engelke, and D Jording, and D Kapp, and A Pühler
March 1989, Journal of bacteriology,
T Engelke, and D Jording, and D Kapp, and A Pühler
February 1988, Journal of bacteriology,
T Engelke, and D Jording, and D Kapp, and A Pühler
May 1995, FEMS microbiology letters,
Copied contents to your clipboard!