Effects of growth hormone-releasing hormone (GHRH) on densely granulated somatotroph adenomas and sparsely granulated somatotroph adenomas in vitro: a morphological and functional investigation. 1989

S Kawakita, and S L Asa, and K Kovacs
Department of Pathology, St. Michael's Hospital, University of Toronto, Ontario, Canada.

The effects of growth hormone-releasing hormone (GHRH) were studied on densely granulated somatotroph adenoma cells and sparsely granulated somatotroph adenoma cells in culture by measuring release of growth hormone (GH) as well as ultrastructural morphometrical parameters and comparing them with those of control adenoma cells. Both types of adenoma cells cultured with GHRH showed similar increases of GH release into culture media and exhibited similar increases in cytoplasmic volume densities (CVD) of endoplasmic reticulum and Golgi apparatus and decreases in CVD of secretory granules and secretory granule diameter. These results indicate that (1) both types of somatotroph adenoma cells react similarly to GHRH stimulation, despite their morphologic differences, and (2) GHRH stimulates GH synthesis as well as GH release by somatotroph adenoma cells.

UI MeSH Term Description Entries
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010911 Pituitary Neoplasms Neoplasms which arise from or metastasize to the PITUITARY GLAND. The majority of pituitary neoplasms are adenomas, which are divided into non-secreting and secreting forms. Hormone producing forms are further classified by the type of hormone they secrete. Pituitary adenomas may also be characterized by their staining properties (see ADENOMA, BASOPHIL; ADENOMA, ACIDOPHIL; and ADENOMA, CHROMOPHOBE). Pituitary tumors may compress adjacent structures, including the HYPOTHALAMUS, several CRANIAL NERVES, and the OPTIC CHIASM. Chiasmal compression may result in bitemporal HEMIANOPSIA. Pituitary Cancer,Cancer of Pituitary,Cancer of the Pituitary,Pituitary Adenoma,Pituitary Carcinoma,Pituitary Tumors,Adenoma, Pituitary,Adenomas, Pituitary,Cancer, Pituitary,Cancers, Pituitary,Carcinoma, Pituitary,Carcinomas, Pituitary,Neoplasm, Pituitary,Neoplasms, Pituitary,Pituitary Adenomas,Pituitary Cancers,Pituitary Carcinomas,Pituitary Neoplasm,Pituitary Tumor,Tumor, Pituitary,Tumors, Pituitary
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000172 Acromegaly A condition caused by prolonged exposure to excessive HUMAN GROWTH HORMONE in adults. It is characterized by bony enlargement of the FACE; lower jaw (PROGNATHISM); hands; FEET; HEAD; and THORAX. The most common etiology is a GROWTH HORMONE-SECRETING PITUITARY ADENOMA. (From Joynt, Clinical Neurology, 1992, Ch36, pp79-80) Inappropriate Growth Hormone Secretion Syndrome (Acromegaly),Somatotropin Hypersecretion Syndrome (Acromegaly),Inappropriate GH Secretion Syndrome (Acromegaly),Hypersecretion Syndrome, Somatotropin (Acromegaly),Hypersecretion Syndromes, Somatotropin (Acromegaly),Somatotropin Hypersecretion Syndromes (Acromegaly),Syndrome, Somatotropin Hypersecretion (Acromegaly),Syndromes, Somatotropin Hypersecretion (Acromegaly)
D000239 Adenoma, Acidophil A benign tumor, usually found in the anterior lobe of the pituitary gland, whose cells stain with acid dyes. Such pituitary tumors may give rise to excessive secretion of growth hormone, resulting in gigantism or acromegaly. A specific type of acidophil adenoma may give rise to nonpuerperal galactorrhea. (Dorland, 27th ed) Adenoma, Eosinophilic,Adenoma, Acidophilic,Adenoma, Eosinophil,Acidophil Adenoma,Acidophil Adenomas,Acidophilic Adenoma,Acidophilic Adenomas,Adenomas, Acidophil,Adenomas, Acidophilic,Adenomas, Eosinophil,Adenomas, Eosinophilic,Eosinophil Adenoma,Eosinophil Adenomas,Eosinophilic Adenoma,Eosinophilic Adenomas

Related Publications

S Kawakita, and S L Asa, and K Kovacs
March 1994, Diagnostic molecular pathology : the American journal of surgical pathology, part B,
S Kawakita, and S L Asa, and K Kovacs
February 2024, World neurosurgery,
S Kawakita, and S L Asa, and K Kovacs
October 2013, European journal of endocrinology,
S Kawakita, and S L Asa, and K Kovacs
February 1983, The Journal of clinical endocrinology and metabolism,
S Kawakita, and S L Asa, and K Kovacs
March 1995, Nihon rinsho. Japanese journal of clinical medicine,
S Kawakita, and S L Asa, and K Kovacs
December 1999, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!